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Phylogenetic trees have a multitude of applications in biology, epidemiology,
conservation and even forensics. However, the inference of phylogenetic trees can be
extremely computationally intensive. The computational burden of such analyses
becomes even greater when model-based methods are used. Model-based methods have
been repeatedly shown to be the most accurate choice for the reconstruction of
phylogenetic trees, and thus are an attractive choice despite their high computational
demands. Using the Maximum Likelihood (ML) criterion to choose among phylogenetic
trees is one commonly used model-based technique. Until recently, software for

performing ML analyses of biological sequence data was largely intractable for more
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than about one hundred sequences. Because advances in sequencing technology now
make the assembly of datasets consisting of thousands of sequences common, ML search
algorithms that are able to quickly and accurately analyze such data must be developed if
ML techniques are to remain a viable option in the future.

I have developed a fast and accurate algorithm that allows ML phylogenetic
searches to be performed on datasets consisting of thousands of sequences. My software
uses a genetic algorithm approach, and is named GARLI (Genetic Algorithm for Rapid
Likelihood Inference). The speed of this new algorithm results primarily from its novel
technique for partial optimization of branch-length parameters following topological
rearrangements. Experiments performed with GARLI show that it is able to analyze large
datasets in a small fraction of the time required by the previous generation of search
algorithms. The program also performs well relative to two other recently introduced fast
ML search programs.

Large parallel computer clusters have become common at academic institutions in
recent years, presenting a new resource to be used for phylogenetic analyses. The P-
GARLI algorithm extends the approach of GARLI to allow simultaneous use of many
computer processors. The processors may be instructed to work together on a
phylogenetic search in either a highly coordinated or largely independent fashion.
Preliminary experiments suggest that analyses using the P-GARLI software can result in

better solutions than can be obtained with the serial GARLI algorithm.
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Chapter 1: Background

1.1 MOTIVATION

It is now widely accepted among biologists that an understanding of the evolution
of a group of organisms requires an understanding their phylogenetic relationships. In
addition to their importance in systematic studies, phylogenetic methods present many
other applications such as prediction of the evolution of infectious diseases (Bush et al.,
1999), the discovery of new drugs (Brown and Warren, 1998), planning conservation
priorities (Faith, 1992), and even forensics (Ou et al., 1992). The recent shift toward an
appreciation of the importance of phylogenetics in many biological fields is further
underscored by the large amount of NSF funding put toward projects such as
“Assembling the Tree of Life” (ATOL: atol.sdsc.edu) and “Cyberinfrastructure for
Phylogenetic Research” (CIPRES: www.phylo.org).

It has also become well accepted that probabilistic model-based methods are the
superior choice for phylogenetic inference, in part because of studies demonstrating their
higher accuracy (Huelsenbeck and Hillis, 1993; Huelsenbeck, 1995; Rosenberg and
Kumar, 2001; Zwickl and Hillis, 2002). These methods include those based on the
maximum likelihood criterion (Felsenstein, 1981) and more recently developed Bayesian
techniques (Rannala and Yang, 1996; Mau et al., 1999; Huelsenbeck and Ronquist,
2001). The primary drawback of these methods is higher computational costs relative to
alternative methods.

When first suggested as an optimality criterion for phylogenetic tree inference
(Felsenstein, 1981), maximum likelihood (ML) analyses were impractical due to limited
computational resources. As computing power and availability have grown tremendously

over the last decade, it has allowed ML analyses to become commonplace. However,
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increases in available sequence data currently outpace increases in computing speed,
leaving phylogeneticists once again limited in their ability to perform ML analyses. The
motivation for the development of the GARLI algorithm (Genetic Algorithm for Rapid
Likelihood Inference) is to ensure that ML phylogenetic inference will continue to be a
reasonable option despite large increases in dataset sizes. This necessity has been
recognized by a number of researchers, and has resulted in several new ML inference
programs that increase the speed of model-based inference through a variety of
algorithmic enhancements (e.g. MetaPIGA: Lemmon and Milinkovitch, 2002; PHYML:
Guindon and Gascuel, 2003; RAXML: Stamatakis et al., 2005; IQPNNI: Vinh and von
Haeseler, 2004).

This chapter presents background material important for the GARLI algorithm,
and for understanding its place in the field of phylogenetic inference. I begin with a
general orientation to the problem of phylogenetic inference, and of the techniques
available to perform such inference. Methodological details relating to the use of the ML
optimality criterion will then be discussed. Finally, a discussion of heuristic methodology
and a survey of relevant phylogenetic search algorithms will be presented, with special

emphasis on ML heuristics.

1.2 PHYLOGENETIC INFERENCE

Terminology

The goal of phylogenetic inference is to obtain a branching structure representing
the evolutionary history of a set of organisms using a set of data that describes some
aspect of the organisms. Discussion here will be limited to unrooted, strictly-bifurcating
tree topologies, although other potential types of evolutionary relationships between

organisms exist (e.g., see Moret et al., 2004). I will begin by defining the component



parts of a tree. Differing sets of terminology are used by researchers in the field. Tree will
be used interchangeably with the term topology. The tips of the tree, representing the
observed data on which the inference is based, will be termed terminal nodes or taxa (also
leaves or tips). The connections between taxa will be referred to as branches (also edges),
each of which may be assigned a numerical value representing its length. Branch lengths
represent some measure of evolutionary distance between nodes, with the exact definition
depending on the inference method. Branches are also referred to as bipartitions, because
each branch divides the taxa on either side of it into two non-overlapping sets. Branches
intersect at internal nodes or vertices, which represent hypothetical ancestral taxa. By
definition, all internal nodes of an unrooted bifurcating tree will be of degree three (i.e.,
connected to exactly three branches).

Orienting a topology with respect to time, known as rooting, is not typically
considered part of the topology search per se. Most tree inference methods do not seek to
distinguish between potential rootings of a particular unrooted topology, and thus the task
of orienting the tree with respect to time usually occurs after tree inference. The most
common method is to include outgroup taxa which are assumed a priori to be less closely
related to any of the ingroup taxa of interest than the ingroup taxa are to one another.
Topologies represented in figures and computer implementations are often oriented by
choosing an arbitrary internal node to be designated as the effective root, although the
tree technically remains unrooted. No additional meaning is assigned to this node, and the
score of the tree is independent of the node chosen. The root lies at the “bottom” of the
tree, and all internal and terminal nodes lie above it.

Restricting consideration to only bifurcating topologies is a choice of
convenience. The consideration of trees containing nodes of degree greater than three,

termed polytomies or multifurcations, increases the number of possible topologies and
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complicates computer implementations. Polytomies are typically used to represent
uncertainty about the relationships in a region of a topology. This uncertainty may arise
because of either insufficient or conflicting signal present in the data. Note that computer
implementations allowing zero or near-zero branch lengths are able to represent
topologies essentially equivalent to those containing polytomies while still maintaining
their technically bifurcating nature. Any unrooted bifurcating tree for n taxa will contain

exactly (2n-3) branches and (n-2) internal nodes.
Input data

Phylogenetic inference may be performed using a variety of data types. The data
are typically represented in the form of a matrix in which rows represent taxa and
columns represent individual characters. Each character may be thought of as an
independent data point containing information about the relationships between the taxa.
Early phylogeneticists primarily used morphological characters, the physical attributes of
the organisms. In theory, inference may be performed using any characters that are
inherited and are able to change over evolutionary time. Modern phylogenetic inference
is performed primarily on biological sequence data, such as DNA, RNA or protein
sequences representing the same gene in each of the organisms. Sequence data are
composed of a series of characters drawn from a limited alphabet. These characters are
referred to as bases or nucleotides in the case of DNA (A, C, G and T) and RNA (A, C, G
and U) sequence, and amino acids in the case of protein sequence (A, C, D, E, F, G, H, I,
K, L,M,N,P,Q,R, S, T, V, W and Y). The preference for sequence data is primarily
due to the ease and speed with which many characters can be gathered and the tractability
of statistically modeling the process of sequence evolution.

Before phylogenetic inference may be performed on sequence data, the sequences

obtained for each taxon must first be aligned such that all characters within a column of
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the data matrix are homologous. This means simply that the characters are related by a
common evolutionary history. Note that this step of alignment would be unnecessary (or
at least easier) if the processes of character insertion and deletion did not cause variation
in the length of the sequences among the taxa. Alignment methods range from fully
automated heuristic algorithms that attempt to find the best alignment based on a
parsimony criterion (e.g., Higgins et al., 1994), to more intensive hands-on methods that
incorporate information about the structure and function of the sequences being aligned
(e.g., Woese et al., 1980). Regardless of how the alignment is generated, it is typically
fixed once it has been entered into phylogenetic software. Note, however, that several
methods for simultaneously inferring alignment and phylogeny have recently been
developed (Redelings and Suchard, 2005; Lunter et al, 2005; Fleissner et al., 2005). The
remainder of this work will be concerned solely with phylogenetic inference performed

on aligned nucleotide sequence data.
Phylogenetic inference methods

A number of distinct methodologies exist for choosing the “best” tree topology
given a set of aligned sequences. The methodologies may be roughly divided into three
main categories. First, distance-based methods use sequence similarity to obtain an
estimate of the pairwise evolutionary distance between taxa, and use those distances to
construct or choose a topology. Second, parsimony-based methods seek the topology that
minimizes the number of inferred evolutionary changes. Third, model-based methods
(i.e., maximum likelihood and Bayesian techniques) use an explicit model of character
evolution to identify topologies that are highly probable given the data. Over the past 30
years researchers have argued over which of the methods should be preferred based on
both philosophical and performance based arguments. Often these disagreements have

not been cordial, and some have gone so far as to describe them as “wars” (see Hull,
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1998). In more recent years there has been a general movement toward the acceptance of
model-based methods, based largely on studies demonstrating their statistical consistency
(Rogers, 2001), superior accuracy (Huelsenbeck and Hillis, 1993; Huelsenbeck, 1995;
Rosenberg and Kumar, 2001; Zwickl and Hillis, 2002), and robustness to model

violations (Fukami-Kobayashi, and Tateno, 1991).
Large tree inference

Both the increased availability of DNA sequence data and advances in
computational power are making it possible to assemble and analyze datasets of sizes
previously thought impossible. It has frequently been shown that increasing the number
of sequences analyzed can increase the accuracy of the inferred trees under realistic
conditions (e.g., Hillis, 1996; Poe, 1998; Zwickl and Hillis, 2002), especially when the
amount of evolutionary divergence between taxa is large. However, some continue to
refute this viewpoint (e.g., Rosenberg and Kumar, 2001; 2003; Rokas and Carroll, 2005).
Although the accuracy of inference may sometimes increase with increased sampling of
taxa, the magnitude of the inference problem doubtlessly increases to a much greater

degree. Define 7(n) as the number of possible unrooted bifurcating topologies for » taxa:

T(n)= ﬁ(Zi -5)

Thus, T grows factorially with increasing », and becomes almost unimaginably large for
n> 50 (e.g., T(50) ~ 2.84x107%). Enumeration and evaluation of all possible topologies
clearly cannot be considered an option, regardless of the optimality criterion used. The
only feasible approach is to apply heuristic methods that seek the optimal solution but

have no guarantee of finding it.



1.3 THE MAXIMUM LIKELIHOOD CRITERION

The basic premise of the ML optimality criterion is to choose the topology that
makes the observed data the most probable. The simplest parsimony and pairwise
distance-based methods are able to calculate the unique score of a topology 7" given only
the data. In contrast, calculating the likelihood score of a topology requires branch-length
values for all (n-3) branches and an explicit model describing how sequences evolve over
time. Define B as a parameter vector containing the lengths of all branches, and M as a
vector of evolutionary model parameters. Branch lengths are typically measured in units
of the expected numbers of substitutions per nucleotide site, as will be discussed further
below. The number of elements in M and their definitions vary depending on which of
the many described nucleotide models is chosen.

More formally, the ML criterion seeks to maximize the likelihood (L) of the
variables (7, B and M) given the data, D. The likelihood is proportional to the probability

of D given the variables:

L(T,M,B|D)x P(D|T,M,B)

Often it is an estimate of 7 that is the primary goal of phylogenetic analyses, with B and
M considered “nuisance parameters”. However, because the likelihood of any topology
depends also on the values of B and M, these parameters are important even if their
values are not of particular interest. For this reason, when the likelihood scores of
topologies are compared, it is generally on the basis of their maximized likelihood. This
is simply the largest possible likelihood score for a particular 7" across all possible values
of B and M. The values of B and M that result in the maximized likelihood will be

denoted B and M , and represent the maximum likelihood estimates of those parameters
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given that tree. There is not an analytical way of solving for B and M given a topology,
and so the maximized likelihood is obtained by one of a number of numerical
optimization techniques such as the Newton-Raphson method or Brent’s method (see
Press et al., 1992). It is this numerical optimization step that constitutes the majority of

the computation in typical ML analyses.
Models of sequence evolution

The sequence evolution models typically used in ML phylogenetic analyses are
classified as time-reversible Markov models; they are not directed with respect to time,
and that the probability of any substitution depends solely on the current state. Models
have been developed for various sequence types, such as sequences of nucleotides, amino
acids, and codons. The present discussion will concern only nucleotide-based models.
The most general time-reversible nucleotide model is termed, aptly enough, the General
Time-Reversible model (GTR: Lanave et al., 1984). The parameters of the GTR model
include equilibrium frequencies of the four nucleotides (ma, mc, mg and mr) and six
parameters representing the relative rates of substitution between each nucleotide pair (a,
b, c, d, e, f). Note that although this amounts to ten parameters, only eight of the
parameters may be considered free because the equilibrium frequencies must sum to one
and the f rate is typically fixed to ensure identifiability of the remaining relative rates.
These parameters are used to define a matrix @, where Q;; represents the instantaneous
rate of substitution from base i to base j. Using the convention of ordering the bases in

alphabetical order (A, C, G, T):

- pwamw. ubmg ucm;
uas - udmg  uerm,
ubm,  udrm. - W,

ucw,  per. W, -



The diagonal elements of Q are the negative sum of the other elements in each row, and
are omitted for clarity. u represents the mean instantaneous substitution rate. Q must be
rescaled such that the mean substitution rate is equal to one in order to maintain the
proper definition of branch lengths as the expected number of substitutions per site.
Given model parameters describing the instantaneous substitution process, the
probabilities of observing state i at one end of a branch of length ¢ and state j at the other

may be obtained from the matrix P, which is defined thusly:

P=c?

There is no closed form expression for P under the GTR model, and it must be calculated
via eigen-decomposition or other numerical methods. Note that all reversible nucleotide
substitution models are nested within the GTR model, and may be obtained by fixing
some of the parameters of this most general model. The present work is concerned only
with the GTR model.

It has been repeatedly demonstrated that a very important component of models of
sequence evolution is the accommodation of rate heterogeneity, variation in evolutionary
rate between nucleotide sites (Sullivan et al., 1995). Some form of rate heterogeneity is
now implemented in nearly all phylogenetic software, although there are multiple
approaches. Two will be discussed here, referred to as discrete gamma rate heterogeneity
(GRH: Yang, 1993, 1994) and site-specific rate heterogeneity (SSRH: Olsen et al., 1994).
In both forms the branch lengths associated with a topology retain their meaning as the
mean number of substitutions per site. Variation in rates is achieved by multiplying these

mean values by rate modifiers representing rates either faster or slower than the mean.
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GRH assumes that the distribution of relative rates of substitution across sites can be
described by a gamma distribution with a fixed mean of one. Given a value of the gamma
shape parameter, a, the gamma probability distribution is divided equally into &
categories (often four). The rate multipliers are taken as the means of these categories.
The likelihood of each site is then defined as the average likelihood of that site over the
rate multipliers. Because GRH requires averaging likelihoods across £ rates, it requires &
times more computation than assuming constant rates across sites. The SSRH model
differs primarily in the fact that a particular rate modifier is assigned to each site, either
by a priori specification or by estimating the rate modifier outright. Because each site is
only scored for a single rate, use of SSRH does not result in a significant increase in
computation. Note that including GRH in a model adds only a single extra parameter, the
o shape parameter of the gamma distribution. In contrast, the relative rate of each site
becomes a separate parameter under SSRH. Thus, each method has its own advantages,
and there is not a clear way of choosing between them. GRH should be preferred on
statistical grounds and SSRH on computational grounds.

Another aspect of rate heterogeneity observed in real datasets is presented by
sites that are invariable, or unable to change over the tree. These sites may be
accommodated in sequence evolution models by adding a class of sites with a rate
modifier of zero, and estimating the proportion of sites in that category (Gu et al., 1995).
This model parameter may be used alone or in conjunction with GRH, and in either case
the total likelihood is calculated as a weighted average of the likelihood values across all

rate categories.
Model choice

Often the numerical values and the meaning of evolutionary model parameters are

not of particular interest. This does not suggest that they are unimportant, as it has been
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shown that ML tree inference is most accurate when an appropriate model is used (e.g.,
Sullivan and Swofford, 1997, Posada and Crandall, 2001). Choosing a model that is too
simple (underfitting) causes the model to be unable to fully capture the process of
substitution that generated the data, and can reduce the accuracy of tree inference.
Choosing a model that is overly complex (overfitting) may reduce the power of tree
inference because some parameters may fit random noise present in the data rather than
true phylogenetic signal. With real biological data, any model we choose will inherently
be a simplification, and so our task is to choose the best available model, rather than
“true” model. The two methods of model choice commonly used by phylogeneticists are
the hierarchical likelihood ratio test (Goldman, 1993) and Akaike’s information criterion
(Akaike, 1973). These methods differ significantly in their philosophy, but it practice

generally give similar results.
Calculating the likelihood

I will now briefly discuss the methodology used to calculate the likelihood of a
topology 7, given a set of branch lengths B and a set of model parameters M. A more
detailed treatment is given by Swofford et al. (1996). First, consider the likelihood of a
“tree” consisting of a single branch of length # connecting two sequences. M and ¢ are
first used to calculate the matrix P, which gives the probability of observing each
possible pair of bases at opposite ends of the branch. The likelihood of a single site, for
example an A at one end and a C at the other end of the branch, may then be obtained
directly from P. Because sites are assumed to evolve independently, the likelihood of the
two sequences is simply the product of the likelihoods of each site.

Now consider the calculation of the likelihood for a single nucleotide site over a
tree consisting of greater than two taxa. The site likelihood is then equal to the sum of the

likelihoods of the observed data across all possible combinations of states at internal
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nodes. Fortunately, the pruning algorithm of Felsenstein (1981) allows the calculation of
the site likelihood without requiring calculation of the likelihoods of each of the 4™
possible assignments of unobserved states at the internal nodes. To perform the
calculation, the topology is first oriented by choosing an arbitrary internal node as the
effective root. The algorithm then requires the calculation of conditional likelihoods at
each internal node. The conditional likelihoods at each node represent the likelihood of
observing the terminal states within the subtree defined by that node, conditional on a
particular unobserved state at that node. The calculation of the conditional likelihoods for
a particular internal node depends only on the branches and nodes (internal or terminal)
immediately above it. Thus, a post-order traversal of the tree may be used to calculate all
of the conditional likelihoods. The conditional likelihood values at the root node
represent the likelihood of the entire topology, conditional on each potential state at the
root. Finally, the total site likelihood is equal to the sum over root states of the likelihood
conditional of each root state times the probability of each root state (the equilibrium base
frequencies). When the likelihood of multiple characters is calculated over a topology,
conditional likelihoods must be calculated for each site independently. Because sites are
assumed to be independent, the total likelihood of a set of sequences may be obtained as
the product of the likelihoods of each column of the data matrix, known as the site
likelihoods. Because this product of the site likelihoods quickly becomes a very small
number, it is typically represented as a log-likelihood, or InL.

The conditional likelihoods calculated for each internal node are of particular
interest because they may be reused in future likelihood calculations. If no change is
made to the topology or branch lengths within the subtree on which the conditional
likelihoods are based, the previous values remain valid and do not require recalculation.

Efficient ML implementations take advantage of this fact by storing the previous
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computations and only recalculating those conditional likelihoods that have changed.
Note that because the evolutionary model parameters by definition apply to the entire
tree, any change to the components of M requires the recalculation of all conditional

likelihoods.

1.4 MAXIMUM LIKELIHOOD HEURISTICS

Heuristic methodology

Because it is computationally intractable to evaluate more than a small proportion
of the possible topologies for a dataset of any size, the only feasible approach is to apply
heuristics. Typical ML branch-swapping heuristics, as typified by PAUP* (Swofford,
2002) and fastDNAml (Olsen et. al, 1994), search by obtaining a starting topology and
then making rearrangements to it in an effort to find more optimal topologies. One
common way of generating the starting topology is by the stepwise-addition method (see
Swofford et al., 1996), which sequentially adds one taxon at a time to a growing tree. All
possible attachment points of each successive taxon are attempted, and each is added at
the location that results in the optimal score. When searching begins, each topology
generated by a rearrangement is evaluated, and if a better scoring topology is encountered
it becomes the topology to which further rearrangements will be made. This type of
heuristic approach is described as “greedy” (because once a choice is made it cannot be
reversed) and “hill-climbing” (because only new topologies that improve the score are
considered).

Heuristic methodology depends on the existence of a correlation between the
score of a particular topology and the score of other topologies that are “near” it in some
sense. Most simply, we may judge the closeness of two solutions in the search space by

the number of rearrangements necessary to convert between them. Thus, the geography

13



of the search space (generally termed “tree-space” in the phylogenetic context) may be
defined by the method used to move through the space. Phylogenetic heuristics most
commonly terminate when a topology is reached from which no rearrangement will
create a better scoring solution. Such a position is an optimum in tree-space, although it
may not be the global optimum that is the ultimate goal of the search. The presence of
local topological optima is an unfortunate but not uncommon feature that complicates
phylogenetic searches. Multiple optima have been studied primarily in the context of
parsimony methods (e.g., Maddison, 1991), but exist for the ML criterion as well. Note
that for heuristic methods that apply rearrangements in a deterministic and ordered
fashion, the identity of the starting topology uniquely determines the optimum at which
the search will terminate if multiple optima exist. Typically such searches are run
multiple times from different starting topologies to increase the probability that the global
optimum is found.

Several standard topological rearrangement types are used in phylogenetic
heuristics (see Swofford et al., 1996 for more details). These are termed Nearest
Neighbor Interchange (NNI), Subtree Pruning and Regrafting (SPR) and Tree Bisection
and Reconnection (TBR). The three rearrangement types are nested, such that the NNI
rearrangements are a subset of the SPR rearrangements, which are in turn a subset of the
TBR rearrangements. The number of unique NNI, SPR and TBR rearrangements possible
from any bifurcating unrooted topology containing n taxa are O(n), O(n%) and O(n%),

respectively (Allen and Steel, 2001).
Enhanced branch-swapping heuristics

Typical ML branch-swapping heuristics calculate the maximized likelihood of
each topology examined by performing full branch-length optimization. Optimization of

model parameters may also optionally be performed. Some programs (e.g., PAUP*) only
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perform this full optimization step if an initial rough estimate of the likelihood is within a
specified threshold of the likelihood of the current topology. Regardless, this branch-
length optimization step is the limiting factor in the number of topologies that may be
evaluated. This fact has been recognized by the developers of two recently released ML
heuristic search algorithms, PHYML (Guindon and Gasquel, 2003) and RAxML
(Stamatakis et. al, 2005). Both programs implement enhancements that reduce the burden
of branch-length optimization in the evaluation of new topologies. Although these
programs are not widely used, they are currently the best available ML heuristics. A more
detailed examination of the details of these algorithms will prove instructive.

The PHYML algorithm begins by constructing a starting tree by the fast distance-
based BIONJ method (Gasquel, 1997) and estimating model parameters on that tree. It
then calculates the InL scores obtainable by applying each possible NNI rearrangement to
the topology. However, instead of fully optimizing all branches of each of the topologies
generated by an NNI, PHYML only finds the optimal length for the one new bipartition
created by each swap. The algorithm then ranks the increases in InL attainable by all of
the rearrangements, and applies a proportion of those that increase the likelihood over
that of the starting tree. The resulting topology is then used as the starting point for the
next round of the algorithm, and model parameters are estimated again.

The PHYML algorithm has several features of note. First, only very localized
rearrangements and branch-length optimizations are performed. Second, because score
improvements due to rearrangements in different parts of the tree are assumed to be
largely independent and additive, multiple rearrangements may be applied
simultaneously. Third, because both the BIONJ method of obtaining the starting topology
and the swapping algorithm are completely deterministic, PHYML will always return the

same topology for a particular dataset unless the user provides a different starting tree.
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The RAXML program is derived from fastDNAml (Olsen et al., 1994), but makes
important algorithmic enhancements. It first creates a starting tree using stepwise
addition under the parsimony criterion, and roughly optimizes model parameter values.
SPR branch-swapping is then performed, with the constraint that the branches to which a
pruned subtree may be reattached are limited by their distance from the branch where the
subtree was initially pruned. All allowable SPR rearrangements from the current topology
are attempted, and the InL scores of the resulting topologies are calculated after only
applying optimization to the three branches directly affected by the rearrangement. The
20 best scoring topologies resulting from the rearrangements are then subjected to full
branch-length optimization, and the most optimal is accepted as the next topology. Model
parameters are then reestimated and the entire procedure is repeated. Note that unlike the
PHYML algorithm, the ability to use random taxon-addition sequences to obtain the
stepwise addition starting tree allows RAXML to return different topologies if run
multiple times, even though the swapping algorithm is deterministic. Like PHYML,

RAXML localizes both rearrangements and branch-length optimization.
Stochastic heuristics

The ML heuristics discussed thus far are deterministic in their application of
branch swapping, and only attempt each rearrangement once. Another class of heuristic
methods incorporates stochasticity in the search strategy. This class includes simulated
annealing approaches and evolutionary algorithms. These methods apply rearrangements
in a random fashion, meaning that both the path of the search through tree space and the
final solution obtained can vary even when the search is started from the same topology.
This property could be viewed as either a benefit or drawback. Regardless, the intent of
introducing stocasticity into the search is not to cause this lack of repeatability, but to

exploit other theoretical benefits.
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Simulated annealing algorithms are similar in nature to the hill-climbing
algorithms discussed thus far, with the important distinction that they are able to accept
rearrangements that decrease the likelihood score. Although it is somewhat counter-
intuitive that accepting topological changes that reduce the likelihood should be
desirable, it is only by allowing such movements that a local optimum can be escaped.
The probability of accepting a topology that worsens the score depends both on the
difference in InL between the current and proposed states and on a control parameter.
This control parameter is slowly changed over the course of a search, reducing the
probability of accepting rearrangements that worsen the likelihood. It has been shown
(although not specifically for phylogenetic problems) that if the control parameter is
changed at the optimal rate the simulated annealing algorithm is guaranteed to return the
optimal solution (Lundy and Mees, 1986). Simulated annealing algorithms for ML
phylogenetic searches have been implemented by Salter and Pearl (2001) and Stamatakis

(2005).
Genetic algorithms

Genetic algorithms (GAs) belong to a class of heuristic methods known
collectively as evolutionary computation. The other general categories of evolutionary
computation are known as evolutionary strategies and evolutionary programming. The
distinctions between these techniques are rather subtle, and unimportant here. All depend
on the concept of evolving a more optimal solution to a problem through the repeated
application of mutation, selection and reproduction. The primary differences between
them lie in the selection scheme and in whether a crossover or recombination technique is
used to create new solutions by combining existing ones.

Unlike the phylogenetic search algorithms discussed thus far, the state of a

genetic algorithm at any point in time is represented not by a single solution in the search
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space, but rather by a group of individual solutions. The individual solutions will be
referred to simply as individuals (also commonly called “chromosomes”), with the
collection of individuals existing at the same point in time making up a population.
Typical population sizes range from 50 to 1000 (Mitchell, 1996). The unit of time over
which one round of mutation, selection and reproduction occur is termed a generation.
Selection is applied to the population through a selection function that relates the
optimality of each individual to its probability of reproduction. Thus, the individuals in
the population compete to be the parents of future generations of individuals. Selection
functions may be divided into two main types, termed rank-based and fitness-
proportional. The definitions of these are intuitive, with the first basing the probability of
reproduction solely on the rank of the individual’s score in the population and the second
taking into account the magnitude of the differences in scores.

Functions acting on the individual solutions are termed “operators”. Mutation
operators alter some portion of the individual solutions, changing their score. The first
GAs (Holland, 1975) encoded their solutions as simple binary strings, and mutation
operators simply changed individual bits in the strings. Unfortunately, such a tractable
representation has not been developed for phylogenetic trees, making the implementation
of mutation operators more complicated. The standard rearrangement types discussed
previously function as reasonable topological mutation operators. However, the best way
of obtaining branch-length values after a rearrangement is not obvious, and presents one
of the largest challenges in the implementation of a GA for ML tree inference. If model
parameters are also encoded as part of the individual, their continuous nature allows for
easy implementation of mutation operators. An important part of most traditional GA
implementations is the use of a recombination or “crossover” operator that can be used to

bring together highly fit portions of two separate individuals into a single solution. The
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optimal implementation of recombination operators in the context of a phylogenetic GA
is also not obvious.

GAs share with simulated annealing algorithms the ability to escape from local
optima by moving through valleys of lower fitness in the search space. The use of
recombination operators to bring together portions of multiple solutions also allows for
“jumping” through the search space and escaping local optima. Typical GAs seek to
maintain a large amount of variation in the solutions present in the population over the
course of a search, and expect to lose this variation as the population eventually
approaches the global optimum. This process is termed convergence, and loss of variation
in the population before reaching the global optimum is known as premature
convergence. The rate of convergence is dependent primarily on the strength of selection

and the population size.
Genetic algorithms for phylogenetic inference

The most important details of any GA implementation are the selection function
and the implementations of the mutation and recombination operators. A number of
researchers have developed GAs to search the space of phylogenetic trees, under both the
parsimony (Moilanen, 1999; Congdon, 2001) and ML criteria (Matsuda, 1996; Lewis,
1998; Lemmon and Milinkovitch, 2002; Brauer et al., 2003). I will focus on the most
recently developed ML algorithms.

The GAML program (Lewis, 1998) and its parallel implementation (Brauer et al,
2003) served as the progenitors to GARLI, both in terms of their general algorithm
structure and in their code base. The code for GAML has been almost entirely rewritten,
and significant differences in the mutation types, implemented models and selection
process warrant its new name. GAML used a rank-based fitness function, and

implemented only the HKY model of sequence evolution (Hasegawa, Kishino and Yano,
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1985), with empirical base-frequency estimates and gamma-distributed rate
heterogeneity. SPR rearrangements were the sole topological mutation operator, and after
a rearrangement branch-length values maintained their previous values. Model
parameters and branch lengths were mutated by multiplying them by a gamma-
distributed random variable with mean one. GAML implemented a recombination
operator in which a subtree is first randomly chosen in one individual. A second
individual is then randomly chosen, and the taxa present in the chosen subtree are
removed from the second individual. The chosen subtree is then grafted onto the second
individual at a random branch. The parallel implementation of GAML applied an
identical algorithm, but distributed the task of calculating the likelihood of topologies
generated by the mutation and recombination operators across multiple processors. It has
been noted that the fact that GAML performed no branch length optimization following
rearrangements almost certainly hampered its effectiveness (Brauer et al., 2003).

The most recently developed ML genetic algorithm is MetaPIGA (Lemmon and
Milinkovitch, 2002). This sophisticated Java program implements a number of interesting
techniques. Foremost among these is the simultaneous evolution of a number of partially
independent “meta-populations” of individuals. Such approaches have been well studied
in the GA literature (see Cantu-Paz, 2001), and can be very effective in increasing search
efficiency by exploring a larger area of the search space and proving a diversity of
solutions for recombination operators to act upon. MetaPIGA takes special advantage of
meta-populations in its novel “consensus pruning” technique. The idea of consensus
pruning is that topological features (bipartitions) found by multiple independent
populations are well supported and will appear in the final optimal topology. MetaPIGA
constrains such bipartitions so that no topological mutations are considered that would
remove them from the topology. This effectively breaks the tree into much smaller
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portions that can be searched within, drastically reducing the search space. Another novel
feature of MetaPIGA is its treatment of branch lengths. Terminal branches are fixed
throughout the search at values derived from a simple distance-based method, and
branch-length mutations may only affect internal branches. Some unfortunate
characteristics of the MetaPIGA software implementation are its fairly extreme memory
requirements and its inability to run in a noninteractive or batch mode. These factors

make investigation of its effectiveness in the analysis of large datasets difficult.
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Chapter 2: The Serial GARLI Algorithm

2.1 INTRODUCTION

GARLI (Genetic Algorithm for Rapid Likelihood Inference) is a heuristic search
algorithm for performing phylogenetic inference under the maximum likelihood (ML)
criterion. The algorithm was developed with the goals of increasing both the speed of ML
inference and the size of the datasets that could reasonably be analyzed. This is achieved
primarily through algorithmic enhancements that allow effective ML topology searching
while performing only a small fraction of the numerical optimization required by older
software.

I begin with a general overview of the GARLI algorithm. GARLI is derived in
part from GAML (Lewis, 1998), and as such special attention will be paid to distinctions
between the two algorithms. A general outline of the algorithm appears in section 2.1,

and more detailed discussions of particular aspects follow in sections 2.2 through 2.6.

2.2 ALGORITHM OVERVIEW

Terminology

Given a set of aligned nucleotide sequences, the GARLI algorithm seeks to
evolve high quality solutions representing the evolutionary relationships between those
sequences. As is typical of genetic algorithm (GA) approaches, this is done through the
evolution of a population of solutions, each termed an individual. Each individual
encodes a topology representing a set of potential evolutionary relationships, a
corresponding set of branch-length parameters for that topology and a set of parameters
representing the model of sequence evolution. The sequence evolution model

implemented is the general time-reversible model (GTR: Lanave et al., 1984), with
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Figure 2-1. A schematic view of the GARLI algorithm.
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discrete gamma-distributed rate heterogeneity (Yang, 1994) and an estimated proportion
of invariable sites (Gu et al., 1995). The fitness of each individual is a function of its log-
likelihood score (InL) on the given dataset.

The starting conditions of the algorithm consist of the initial population of
solutions, and may be user-specified or generated randomly. I will use the term GA
parameters to refer to all variables that control the details of the genetic algorithm,
including aspects of the selection process, mutation operator details and mutation
operator probabilities. The most important GA parameter is P,, which controls the extent
of deterministic branch-length optimization that follows topological mutations. Two
important timescales exist: the generation, which consists of a single round of replication,
mutation and scoring of individuals, and the update interval, which consists of one
hundred generations. At the end of each update interval certain GA parameters are
evaluated and may be adaptively altered. Individuals of the previous generation are
referred to as the parent individ