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Abstract

We are currently faced with the situation where applica-
tions have increasing computational demands and there is
a wide selection of parallel processor systems. In this paper
we focus on exploiting fine-grain parallelism for a demand-
ing Bioinformatics application - MrBayes - and its Phylo-
genetic Likelihood Functions (PLF) using different archi-
tectures. Our experiments compare side-by-side the scal-
ability and performance achieved using general-purpose
multi-core processors, the Cell/BE, and Graphics Processor
Units (GPU). The results indicate that all processors scale
well for larger computation and data sets. Also, GPU and
Cell/BE processors achieve the best improvement for the
parallel code section. Nevertheless, data transfers and the
execution of the serial portion of the code are the reasons
for their poor overall performance. The general-purpose
multi-core processors prove to be simpler to program and
provide the best balance between an efficient parallel and
serial execution, resulting in the largest speedup.

1. Introduction

In order to address the constant demand for increased
performance within the complexity and power budgets, cur-
rent microprocessors are composed of multiple cores. Two
major challenges need to be addressed in order to efficiently
exploit the increasing on-chip parallel resources: the archi-
tecture of these large-scale many-core processors and the
programmability of such systems.

The multi-core models currently available in the mar-
ket represent different attempts to address the above issues.
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The major contribution of our work is to analyze the differ-
ent existing architectures in terms of performance, scalabil-
ity and programmability. To achieve this goal we focus on
three different types of multi-core architectures and how to
exploit fine-grain parallelism for a demanding and relevant
application from the area of bioinformatics.

The three different architectures and models under
study are: general-purpose homogeneous multi-core (dual-
and quad-core Intel and AMD processors); heterogeneous
multi-core (IBM Cell/BE); and graphics processors units
(NVIDIA GPUs). The general-purpose multi-core and
Cell/BE processors support the Multiple-Program Multiple-
Data (MPMD) model, while the GPU processors support
the Single-Program Multiple-Data (SPMD) model. The
memory hierarchy of the different architectures has also in-
teresting distinct characteristics. For the general purpose
multi-core processors the caches are completely handled by
hardware. In contrast, for the Cell/BE the cache memory
of the parallel processing elements is completely handled
by software, i.e. the programmer has the responsibility of
mapping the data and explicitly loading the data before its
use. For the GPU processors we have an intermediate solu-
tion where the programmer is required to map the data to the
cache memory but the accesses are handled by hardware.

Regarding the target application, we assess how Mr-
Bayes [10], a program for Bayesian inference of evolution-
ary (phylogenetic) trees, can benefit from fine-grain paral-
lelism. Phylogenetic inference deals with the reconstruction
of the evolutionary history for a set of organisms based on
a multiple sequence alignment of molecular sequence data.
Due to the large number of potential alternative unrooted
binary tree topologies the problem of finding the best scor-
ing tree is NP-hard for the Maximum Likelihood model [2].
The scoring function used in MrBayes is also adopted in



other phylogenetic inference programs [5, 11].
The Phylogenetic Likelihood Function (PLF) in Mr-

Bayes is parallelized by using OpenMP for the general pur-
pose multi-core systems, POSIX Threads for the Cell/BE
systems, and CUDA for the GPU systems. Experimental re-
sults show that all considered architectures scale well their
performance when the input data set is increased. In the
systems with hardware-managed caches, the sharing of a
cache level, within the chip, by all cores, is a determining
factor for efficient synchronization and therefore the scal-
ability of the number of calls to the parallel section. The
users effort in managing the software-managed caches is
compensated by the efficient synchronization mechanisms
in the Cell/BE. Moreover, since the PPE was designed only
to coordinate the execution of the SPEs, it is not able to ex-
ploit single thread performance as the traditional CPUs. As
such, its overall performance is affected by the penalty of
the serial code execution. Overall, comparing to the serial
execution, the GPUs reduce significantly the execution time
of the parallel section but the data transfer overheads penal-
ize the effective overall speedup. Therefore, the best overall
speedup is achieved by the general-purpose multi-core sys-
tems, which combine efficient parallel and serial execution.
While our results are based on MrBayes, the work presented
here is of general interest, because it discusses program-
ming techniques to efficiently exploit memory-intensive
fine-grained loop-level parallelism, and provides a perfor-
mance comparison across different architectures.

The remainder of this paper is organized as follows. In
Section 2 we present the different architectures analyzed in
this work. Section 3 describes MrBayes and its paralleliza-
tion strategies proposed for the different architectures. Sec-
tion 4 describes the experimental setup and results. Finally,
Section 5 covers relevant related work and conclusions are
presented in Section 6.

2. Multi-core Architectures

2.1. General-Purpose Multi-Cores

The general-purpose microprocessors support the
MPMD model and include different levels of hardware-
managed cache memory. While the number of cores is still
relatively small, each core is able to exploit the ILP for
efficient single thread execution. Regarding the memory
hierarchy, the last cache level on the chip is in most cases
shared by all the cores. Typically the memory hierarchy is
coherent therefore allowing the use of a shared-memory
parallel programming model. In addition, the sharing of
the internal cache by all cores allows for the efficient data
transfer and synchronization between them. For these
processors, parallel programming is relatively easy using
POSIX Threads (pthreads) or OpenMP directives.

2.2. Cell/BE

The Cell/BE is a heterogeneous multi-core architecture
consisting of 9 cores: one general purpose core, the Pow-
erPC Processor Element (PPE), and eight special purpose
cores, the Synergistic Processing Elements (SPEs). The
PPE is a simple processor that was designed for coordinat-
ing the execution on the SPEs and run the Operating Sys-
tem (OS). The SPEs are simpler processors as their pur-
pose is the execution of the parallel code. Each SPE in-
cludes a small private unified memory, the Local Store (LS),
with 256KB. A key component of this loosely coupled
system is the Element Interconnect Bus (EIB). This high-
bandwidth, memory-coherent bus allows the cores to com-
municate through DMA data transfers between local and
remote memories. The Cell/BE does not support shared-
memory at hardware level, giving the user the responsibil-
ity to efficiently manage the memory space. Applications
on the Cell/BE can be parallelized using pthreads but, un-
like the general-purpose multi-core, the user is also respon-
sible for the necessary data transfers and allocation to the
corresponding LS memories.

2.3. Graphics Processing Unit(GPU)

The GPU processors include a large number of very ba-
sic cores and are typically used as accelerators to a host
system. A GPU is usually connected through a system bus
(e.g. PCIe) to the CPU, and can be used for general-purpose
applications (GPGPU) [7].

The Compute Unified Device Architecture (CUDA) is a
compiler-supported programming model that offers an ex-
tended version of the C language for programming recent
NVIDIA GPUs. Parallelism with CUDA is achieved by ex-
ecuting the same function or kernel by N different CUDA
threads which, in turn, are organized in blocks. During exe-
cution CUDA threads may access data in multiple levels of
the memory hierarchy: private local memory, shared mem-
ory and global memory. Data organization in this hierarchi-
cal memory is crucial to achieve the best efficiency.

3. Fine-Grain Parallelism in MrBayes

3.1. MrBayes Overview

MrBayes is a popular program for Bayesian phyloge-
netic inference. This program is based on the Maximum
Likelihood (ML) model [3] that represents a broadly ac-
cepted criterion to score phylogenetic trees. To compute
the Phylogenetic Likelihood Functions (PLF) on a fixed tree
one needs to estimate the branch lengths and the parameters
of the statistical model of nucleotide substitution. For DNA
data sequences, a model of nucleotide substitution is pro-
vided by a 4x4 matrix (denoted as Q and shown in Figure 2),
that contains the instantaneous transition probabilities for a
certain DNA nucleotide (A - Adenine, C - Cytosine, G - Gua-
nine, or T - Thymine) to mutate into a nucleotide A, C, G,



C

A G

T

Figure 1: A DNA substi-
tution model

A C G T

A

C

G

T

Q r0

rn
...

Figure 2: Nucleotide substitu-
tion matrix Q

r0

rn
...

A C G T

Conditional Likelihood vector
m elements

Figure 3: Conditional likelihood
(cl) vector (detail of one element)

X XX X

+ +

+

vector A vector B

Inner Product

Figure 4: Inner product depen-
dencies graph

or T, according to the substitution model in Figure 1. Ide-
ally to compute the nucleotide substitution probabilities for
a branch with length t (time along the branch), one has to
compute P (t) = eQt.

This basic model is usually extended by additional model
parameters, such as the Γ model [14], which typically uses 4
discrete rates, r0, r1, r2, r3. To compute the likelihood of a
fixed unrooted tree topology with given branch lengths and
model parameters, one initially needs to compute the entries
for all internal likelihood vectors. They contain the proba-
bilities of observing an A,C,G, or T for each column of the
input alignment. Hence, the conditional likelihood vectors
“cl” have the same length “m” as the sequences in the input
alignment. In the Γ model every likelihood vector element
is composed by 16 floating-point numbers: 4 discrete rate
arrays each with 4 entries as shown in Figure 3.

Phylogenomic data sets contain a large number of
concatenated genes. For example, a current real-world
study contains 1,500 genes. The execution of a Max-
imum Likelihood-based phylogenetic analysis using this
real-world example requires approximately 2,000,000 CPU
hours on a BlueGene/L system [8]. In this work we exclu-
sively focus on fine-grain loop-level parallelism at the PLF
level. All current PLF-based programs spend the largest
part of run time, typically around 85-95% in the computa-
tion of the PLF [8, 12]. The basic task consists in scheduling
and distributing the required likelihood vector data struc-
tures and loop iterations to the several processing elements.

The profiling of the execution showed
that CondLikeDown, CondLikeRoot, and
CondLikeScaler are the three main PLF func-
tions, which account for more than 85% of the total
execution time. As depicted in Figure 5, the PLF mainly
consist of independent for loops with a computational
load that depends on the sequence length (m) and the
number of discrete rates (r). In each iteration, the functions
CondLikeDown and CondLikeRoot multiply the like-
lihood vector elements by the substitution matrix for each
of the defined discrete rates. Thus, considering 4 discrete
rates, the computation of a likelihood element requires 4
matrix-vector multiplications, or 16 inner products. The
inner product can be seen as a reduction, namely the
multiply and accumulate operations over 2 vectors of 4

floating-point numbers as depicted in Figure 4. Finally, the
function CondLikeScaler is used to avoid numerical
underflow. To scale the entries, this function finds the
maximum entry by successive comparisons, which is also
a reduction operation and has a computational complexity
similar to the previous functions. PLF implementation in
MrBayes uses single-precision arithmetic.

Input: cl Arrays
Input: Substitution Matrices Q
Output: Result clP
foreach cl element do

foreach Discrete rate do
foreach Q row do

Calculate Inner Product (Qrow, cl)
end
Multiply the final arrays.

end
end

Figure 5: CondLikeRoot and CondLikeDown computation

3.2. General-Purpose Multi-Core

In most cases, the parallelization of the applications con-
sists in identifying the most costly loops and, provided that
the loop iterations are independent, parallelize them via the
#pragma omp parallel for OpenMP directive. In
many cases the code includes nested loops. Based on a
profile analysis, it is relatively straight-forward to paral-
lelize the sequential code, since each PLF function contains
compute-intensive independent loops. Given the relatively
small number of parallel resources utilized in the OpenMP
execution, the decision taken was to parallelize the outer-
most loop, thus reducing the parallelization overheads. Be-
sides, each loop data accesses are analyzed in order to iden-
tify shared and private variables in the individual iterations.

3.3. Cell/BE

In the Cell/BE the execution of the PLFs is mapped to the
SPEs, while the rest of the application executes on the PPE.
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Despite the SPE memory limitations (256KB), the code
space required for PLFs is not critical, only 90KB. How-
ever, the amount of data to be processed (the likelihood
vectors), per PLF invocation, does not fit into the local
SPE memory. Therefore, a simple data partitioning scheme
among the SPEs is not sufficient. To solve this problem, we
deploy a two-level partitioning scheme as depicted in Fig-
ure 6: (i) in a first level partition the PPE evenly assigns the
m likelihood vector elements to the different SPEs, the first-
level data blocks are then processed in parallel by the Syner-
gistic Processing Units (SPUs); (ii) according to the blocks’
size, each SPE creates smaller sub-partitions (chunks) that
are sequentially computed by each SPU. This method al-
lows to achieve full scalability independently of the data
size. The PLFs execution on the SPUs is coordinated by
a simple local Finite State Machine (FSM) through mes-
sages issued by the PPE, namely: to trigger the execution
of the PLF functions (see section 3.1), the calculation of the
chunk sizes, and to finalize the computation. With a spe-
cific message type to calculate the chunk sizes, sequences
of data with different sizes can be used at the same time, i.e.
likelihood vectors with different m’s.

Finally, we also use the Single-Instruction Multiple-
Data (SIMD) hardware structures of the SPEs to exploit
the data parallelism in the reductions referred in sec-
tion 3.1(Figure 4), as presented in Figure 6. Two differ-
ent approaches can be implemented: i) data parallelism is
exploited in each of the reductions by directly the compu-
tations shown in Figure 4 to the SIMD instructions; and ii)
the computation is optimized by exploiting data parallelism
across the four reductions, i.e., one matrix-vector multipli-
cation. In the former approach there is a row-wise access
to the matrix Q, a partial multiplication with the vector cl
and finally the accumulation of the partial results; while
in the latter approach four serial reductions are computed
by the SIMD instructions, requiring a column-wise access
to the matrix. SIMD instructions are used more efficiently
in the second approach due to the reduction characteristics.
We implemented both approaches and observed a benefit of
34% for the total speedup and 2x for the PLF speedup in the
latter approach compared to the former. Therefore, herein

we only present the results regarding the latter approach.
The Cell/BE supports DMA transfers of aligned data for

a maximum size of 16KB per transfer. To efficiently ex-
ploit the data parallelism (SIMD) the likelihood arrays used
by each of the three PLF functions are aligned to a 128
byte boundary. For the first mentioned SIMD implementa-
tion, dummy elements were inserted to adjust the memory
boundaries. For the second approach, besides the dummy
elements, the transpose of the substitution matrices Q is cal-
culated to facilitate the columnwise access.

Among the several synchronization mechanisms avail-
able on the Cell/BE, direct problem state accesses was used
for the synchronization between the PPE and the SPEs
while DMA transfers were used between the SPEs. The
rationale for this choice is that these are the most efficient
mechanisms for this particular type of frequent fine-grained
synchronization. Direct problem state accesses are similar
to mailboxes while with the DMA transfers the PPE per-
forms a busy wait for an SPE notification minimizing the
communication/synchronization overhead.

It is important to note that the adopted two-level parti-
tioning method along with the double-buffering technique
requires two levels of synchronization to maintain data co-
herence in the LS and in the main memory. Our communi-
cation scheme is outlined in Figure 7: synchronization bar-
riers are depicted by horizontal lines, Ti events represent
DMA data transfers to the SPE prior to the corresponding
PLF computation Ci, and Ri events represent DMA trans-
fers of the results back to the main memory.

3.4. Graphics Processing Unit (GPU)

For each PLF invocation, the input data is sent to the
global GPU memory, the corresponding parallelized PLF
function is executed on the GPU side and the results are then
transfered back to the CPU. Although the general structure
of the algorithm is similar to the one used for the Cell/BE,
there are some important differences imposed by the GPU
architecture and the API: (i) higher amount of parallelism to
exploit due to a larger number of processing elements; (ii)
reduced number of data transfers from the CPU to the de-
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Figure 8: GPU data partition and Likelihood vector computation and synchronization.

vice memory because there is sufficient memory to handle
the input data; and (iii) data transfer synchronization proce-
dure is handled automatically by CUDA, thus not requiring
any additional explicit synchronization mechanism.

To efficiently exploit the GPU architecture, the num-
ber of threads must be maximized. As well as for the
Cell/BE two different approaches can be followed to dis-
tribute the work among the threads: (i) directly parallelize
each of the reductions described in section 3.1; or (ii) par-
allelize the work at the likelihood vector entry level. Al-
though each of the reduction operations can be performed
using a group of threads in parallel as shown in Figure 8(b),
this solution requires a large number of synchronization
points and conditional statements, which corresponds to a
large overhead. In the second approach, the calculation of
each vector entry is assigned to one completely indepen-
dent thread, thus avoiding the overheads of the synchroniza-
tion points and conditional statements (Figure 8(c)). On the
one hand, the amount of concurrency exploited in this latter
case is smaller, but on the other hand the threads are com-
pletely independent. Also in this case we implemented both
approaches and observed a benefit of 36% over the total
speedup and 2.5x over the PLF speedup for the latter ap-
proach compared to the former one. Therefore, herein we
also only present the results relative to the latter.

In order to maximize our design efficiency we had to
properly balance the workload by partitioning the data in
three levels as depicted in Figure 8(a): (i) global parti-
tions splits the data when its size is larger than the device
memory, to guarantee full scalability; (ii) block partition
evenly distributes the m likelihood array elements between
the CUDA blocks, which are processed independently; and
(iii) thread partitions assigns a group of threads to a set of
computations. This configuration allows to fully parallelize
the likelihood vector computation among the several cores
of the GPU in a balanced and scalable way. The same par-
allelization approach is used in the three PLFs.

The fact that the likelihood vector is organized in mul-
tiples of 4 floats can be used to further improve the GPU

performance. By assigning groups of 4 threads to each like-
lihood vector discrete rate (array of 4 floats) allows the com-
piler to coalesce memory accesses because the threads ac-
cess to adjacent memory locations. By extending this tech-
nique, several groups of 4 threads can access neighbor like-
lihood vector discrete rates to improve the performance.

Design space exploitation led to testing a wide range of
configurations for different number of threads and blocks of
the CUDA kernel. The maximum number of threads is di-
rectly affected by the maximum shared-memory size, num-
ber of registers per thread, and number of threads required
to use full thread warps [6]. Based on the execution time
for the different configurations, it was concluded that 256
threads and 40 blocks was the best solution to use in the
GPU 8800 GT, while for the GPU GTX 285 the best results
were obtained with 256 threads and 85 blocks (see Table 1).

4. Experimental Setup and Results

The configuration details of the multi-core systems are
provided in Table 1. The architecture denoted as Baseline is
used as reference for calculating relative figures in the next
sub-sections. The OpenMP implementation used in this
work was the one supported by the Intel Compiler Suite 11
(C/C++ and Fortran) and executed on the Xeon and Opteron
based systems. For the Cell-based systems we used the Cell
SDK version 2.0 while for the GPU-based system we used
CUDA v2.1 to generate the executables tested in this work.

DNA test data sets of various sizes were generated and
simulated with Seq-Gen [9] (v1.3.2), and they were used as
inputs for MrBayes version 3.1.2. As input for Seq-Gen
we used trees with 10, 20, 50, and 100 leaves obtained
from analyses of real data sets and evolved artificial se-
quence alignments with 500,000 columns each under the
GTR+Γ model on those trees [14]. For every tree size, sub-
alignments with 1,000, 5,000, 20,000, and 50,000 distinct
columns were automatically extracted by using a perl script.
This was done because identical alignment columns can be



Table 1: Systems Setup
Baseline 2xXeon(4) 4xOpteron(4) 8xOpteron(2) PS3 QS20 8800GT GTX285

System Generic IBM x3650 Dell PowerEdge Sun x4600 M2 Sony PS3 IBM QS20 NVIDIA NVIDIA
M905 8800 GT GTX 285

Cores 1 2x Quad 4x Quad 8x Dual 1+6 2x (1+8) 112 240
Model Intel E8400 Intel E5320 AMD 8354 AMD 8218 PPE+SPE PPE+SPE Streaming Streaming
Freq 3.0GHz 1.8GHz 2.2GHz 2.6GHz 3.2GHz 3.2GHz 1.5GHz 1.476GHz
Cache 6MB 2x4MB 4x512KB+2MB 2x1MB 512KB 2x 512KB 256KB 480KB
Mem 2GB 48GB 64GB 64GB 256MB 2x 512MB 512MB 1GB

compressed into column patterns under ML, which are then
assigned a respective higher per-pattern weight. Hence, in
our experiments the number of columns corresponds ex-
actly to the number of patterns and thus to the length of the
compute-intensive for loops. In the remaining of the paper
we use x y to denote the number of leaves and columns for
each of the input tests. Finally, we also used a subalignment
of a real-world phylogenomic alignment of mammalian se-
quences with 20 organisms, 28,740 alignment columns, and
8,543 distinct column patterns. MrBayes was executed with
fixed random number seeds and a fixed number of genera-
tions to ensure a fair comparison of the results.

4.1. Scalability

As described previously, each input data set is character-
ized by two numbers, the leaves and the columns. Roughly,
the columns represent the size of the data being computed
in the compute-intensive loops while the number of leaves
is related with the number of calls to the PLF. Thus, we use
the increasing number of leaves to study the computation in-
tensity scaling and the number of columns to study the data
size scaling of the algorithm for the different architectures.

4.1.1 General-Purpose Multi-Core Architectures

The first results here presented regard the scalability of the
different general-purpose multi-core based systems. In Fig-
ure 9 we show the relative speedup for the execution on
the 8-core two-way Quad-core Xeon, the 16-core four-way
Quad-core Opteron and the 16-core eight-way Dual-core
Opteron systems for all input data sets. The relative speedup
is the speedup achieved for n-cores vs 1-core execution.
The chart in Figure 9 includes four groups of data, each rep-
resenting a different input data size, while each point within
a group represents a different amount of computation.

Starting with the two-way Quad-core Xeon (2xXeon(4)),
the higher speedup values require using larger data sets
(lowest speedup of 6 for the 1K columns data sets) but
this speedup is penalized by the computation intensity, i.e.
the increasing number of calls to PLF. This indicates that
the OpenMP implementation for spawning of the parallel
PLF execution and synchronization at the end of the ex-
ecution, leads to some overhead. To avoid this issue it
would be interesting to explore alternative parallel execu-
tion using implementations that are more efficient (e.g. the
TFlux [13] model which has minimal synchronization and
runtime overheads).

Regarding the four-way Quad-core Opteron
(4xOpteron(4)), the results in this chart show that the
performance of this particular system suffers for executions
with small data sets (1K columns). For that case the
speedup values are low and unstable. For the larger data
sets, the speedup values are larger but the results show again
that the increasing computation introduces some penalty
on the speedup values. Nevertheless, for this architecture
the overheads seem to be smaller, most probably due to
the internal architecture of the multi-core chips. While
both are Quad-core, in the case of the Xeon, its package
contains two dual-core dies while the Opteron includes a
single die with four cores. As such, the shared L2 cache in
the case of the Xeon is actually composed of two separated
caches, each one shared by a couple of cores. In the case
of the Opteron the L2 cache is shared by the four cores.
The implications of this fact are that the communication
between the cores can be more efficient across the four
cores of the Opteron.

Finally, for the eight-way Dual-core Opteron
(8xOpteron(2)) the results show similar trends to the
results obtained for the Xeon system. The most rele-
vant factor here, and this becomes more severe with the
increasing number of cores, is the penalty suffered for
the increasing computation. These results confirm the
hypothesis presented in the discussion of the Quad-core
Opteron results. Indeed it seems that the spawning and
synchronization of the parallel tasks results in a larger
overhead as the chips include fewer cores. This is due
to the more costly communication between the cores
in different chips, and in different dies but on the same
package in the Xeon.

Overall, the results for the general-purpose multi-core
architectures show that the efficiency of the fine-grain par-
allelism depends on the integration of more cores into the
same die sharing the same cache, therefore allowing for ef-
ficient intra-chip, across-core communication.

4.1.2 Cell/BE

The speedup results presented for the two Cell/BE based
systems, the PS3 and the QS20, with one and two Cell/BE
processors, respectively, are relative to the execution on a
single SPE processor. As such, the n-core speedup is the
ratio between the execution on 1 SPE and the execution on
n SPE processors. Figure 10 depicts the results for both
systems. From this chart it is possible to observe that other
than for the smallest data set (1K columns), the speedup val-
ues are close to the ideal. Actually, the maximum efficiency
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Figure 10: Scalability for the Cell/BE based systems

obtained on the Cell/BE for the PLF is 92% compared to
the average 71% obtained for the different general-purpose
multi-core systems. Also important to notice is that the per-
formance is stable across the different computation intensi-
ties. The results thus show that the Cell/BE is more tolerant
to the synchronization overheads mentioned before. It is
relevant to mention that unlike the general-purpose multi-
core processors, the cores in the Cell/BE do not share any
common cache. This though does not result in a penalty
for the execution as the Cell/BE has efficient mechanisms
to exchange data and perform synchronization. In addition,
instead of relying on a automatically generated code, the
Cell/BE is executing carefully hand-tuned code. Thus the
reduced overheads observed.

Although the speedup value is stable for the 16-core ex-
ecution, its value is close to 12x. While we expected this
value to be higher, it is interesting that the same value is
achieved for the best cases with the general-purpose multi-
core systems. However, in contrast with the multi-cores, a
slight increase in the speedup is observed for the increasing
computational intensity. This results from the fact that given
the efficient synchronization and data transfers, the higher
computation-to-data ratio, the better the performance.

4.1.3 GPU

In the case of the GPU processors, given its model, the ex-
ecution on a single core is not applicable. Therefore, the
speedup reported is the performance improvement relative
to the execution on the lower-spec GPU (8800GT) using
the smaller data set size (10 1K). As such, the results here
presented should not be directly compared with the results
from the previous sections. Instead, these results should be
used only to study the trends on how the speedup scales for
the changes in data sets and computation intensity.

Figure 11 presents the relative speedup values for the
8800GT and GTX285 based systems, as described before.
From this chart it is possible to observe that the speedup val-
ues increase as the data sets increase up to the 20K and 50K
columns where the maximum speedup values are achieved.
Interesting is the fact that unlike the general-purpose multi-
cores, and at a higher degree of what had been observed

for the Cell/BE, for the GPUs, as the computational inten-
sity increases, so does the speedup. This is probably due
to the fact that this type of processor is designed for effi-
cient execution of small parallel threads and therefore the
overheads observed for the other systems do not apply for
the GPUs. It is also well known that GPUs benefit increases
when the computation-to-data ratio is high. Finally, it is rel-
evant to notice that there is a significant difference between
the speedup achieved by the 8800GT and the GTX285. The
speedup achieved by the GTX285 is 2.2x larger for the 20K
column sets and up to 2.4x larger for the 50K column sets,
in comparison with the speedup achieved for the 8800GT.
This results indicates that the GPU architecture scales well
as the number of cores available in the GTX285 (240) is
2.1x larger than the number of cores in the 8800GT (112).

4.2. Total Execution Time

In this Section we analyze the total execution time across
the different systems. For this analysis we also use the base-
line execution as a reference. In addition, in order to have
a fairer comparison, we scale the results according to the
frequencies of each system and the baseline.

Although all architectures have proven to have good
scalability in the execution of the parallel section, the reduc-
tion of the total execution time is relatively small, specially
for all systems other than the general-purpose multi-core
ones. Although not shown, the 8-core system achieves ap-
proximately 4x speedup, while the 16-core systems achieve
approximately 7x speedup. The Cell/BE systems, both for 6
and 16 cores achieve only about 1.5x speedup and only one
of the GPU systems achieves a speedup which is approxi-
mately 1.5x.

In order to understand this relatively poor performance
we analyzed the execution time for each system, breaking
down the frequency-scaled time into the time spent for the
execution of the PLF (plf) and the remaining application
execution time (Remaining). Also, for the GPU systems we
have identified the portion of the execution time spent in the
communication of data to and from the graphics card. The
normalized execution time for all systems is presented in
Figure 12.
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Figure 11: Scalability for the 8800GT and GTX285 systems
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Figure 12: Frequency scaled total time for all systems, real data set

As reported earlier, for the baseline, the larger portion of
time (greater than 90%) is consumed in the execution of the
PLF. For example, for the real input set the complete exe-
cution takes 62s out of which 57s are spent in the execution
of the PLF. All parallel architectures target the reduction
of this large portion of time. Notice that all architectures
are successful in achieving this goal. The general-purpose
multi-core systems reduce it to 10-15%, the Cell/BE sys-
tems reduce it to 20-30% and the GPU systems to 5-10%.
Considering just this goal, the GPUs would be the most suc-
cessful architecture. Nevertheless, other factors play an im-
portant role in the execution of the complete application.

For the GPU systems we observe that the Remaining
time increases slightly and this is not only due to the host
system of the graphics card being slightly slower than the
baseline. Before each PLF execution the host needs to co-
ordinate with the card and ship the code for execution on
the GPU, which is a relatively small overhead. However,
the largest overhead for the GPU systems is the transfer of
the data to and from the graphics card. This results in a
large penalty in the execution time to such an extent that
for the 8800GT its execution time is at the end larger than
the baseline. This proves that in order to exploit the perfor-
mance benefits offered by the GPU architecture it is needed
to explore faster ways to transfer the data, or overlap the
data transmission with computation on the GPU and host
system similarly to what is done for the Cell/BE.

For the Cell/BE, while the PLF execution is also signif-
icantly reduced, the Remaining time increases significantly
compared to the original execution on the baseline sys-
tem, therefore highly penalizing the total execution time.
This is due to the fact that while the PLF code is effi-
ciently executed in parallel on the SPEs, the serial code (Re-
mainder) is executed on the PPE, which is a simple core,
mainly designed to efficiently coordinate the execution on
the SPEs. This analysis is corroborated by the efficiency
results, which show a drop of about 40% when compar-
ing the PLF to the execution of the complete application.
The differences between the PPE capabilities and the core
on the baseline system are, for example, in-order execution
and a relatively small 512KB L2 cache. In addition, the

PPE is responsible for the coordination and data transfers
to the SPEs. It is relevant to notice that although the PPE
was designed to be just managing the work executed on the
SPEs and executing the host Operating System (OS), its low
specifications results in a large penalty even for applications
which portion of code to be executed on the PPE is small.
To avoid this problem it would be interesting to explore sys-
tems with multiple cores in order to use the Cell/BE for the
parallel section of the code (as the GPU) and offload the
serial execution to more powerful cores.

Finally, the general-purpose multi-cores, although they
do not achieve the largest reduction in the PLF execution,
they reduce it significantly and at the same time they also
reduce the Remainder portion of the time. The general-
purpose multi-core systems have cores with the similar
specifications as the core in the baseline and thus are able
to efficiently handle the serial execution. At the same time
they have multiple resources therefore allowing to exploit
the parallelism required. While it is expected that this type
of architecture will not lead to efficient large-scale systems,
at the current scale and with the current problem sizes and
computation intensity, they are the best solution at hand.

Overall, results observed for the different architectures
lead us to believe that a successful future large-scale many-
core system will have to be composed of heterogenous cores
in order to be able to provide a large degree of parallelism,
they should have some sort of shared memory resources or
efficient communication mechanisms for synchronization
support and also certain powerful cores in order to execute
the serial code, even if that is a small portion of the exe-
cution. With respect to development times, the Cell/BE is
the most demanding system while multi-cores are compar-
atively easy to program. It took us approximately half a day
to parallelize MrBayes on multi-cores, 2 days on the GPU,
and 10 days on the Cell/BE.

5. Related Work

With the exception of PBPI [4], that conducts multi-
grain Bayesian inference on the BlueGene/L, to the best of
our knowledge, no other work has addressed the issue of



parallelizing the PLF. PBPI essentially represents a proof-
of-concept work, since the capabilities of the program do
not correspond to the needs of Biologists for real-world
analyses, mainly, because it only implements the very sim-
ple models of nucleotide substitution (see [8] for more de-
tails). Most remaining work on parallelizing the PLF has
focused on RAxML. The program has recently been par-
allelized on the BlueGene/L [8], on a variety of multi-core
and supercomputer architectures to compare Pthreads, MPI,
and OpenMP [12], and on the Cell/BE [1]. The work
on the Cell/BE architecture mainly focused on aspects of
scheduling multi-grain parallelism and represents proof–
of–concept work rather than a production level paralleliza-
tion of RAxML. The MPI-based parallelization scheme
presented on the BlueGene/L [8], is currently being in-
tegrated into the publicly available RAxML release. A
recent study [12] compared MPI, OpenMP, and Pthreads
from multi-core architectures up to an infiniband-connected
Linux cluster with SMP-nodes and an SGI Altix 4,700.

In the work presented in this paper, programming
paradigms and scalability of the PLF is accessed, from
multi-core architectures down to the Cell/BE and GPUs.

6. Conclusions

This work is focused on exploiting emerging multi-core
processors and accelerators to improve the performance of
the execution of Phylogenetic Likelihood Functions (PLF)
from a well-known Bioinformatics application, MrBayes.
Given the large number of cores and huge amount of data
that will become available in the near future, we decided to
focus on exploiting the fine-grain parallelism in the PLFs.
While the work focuses on a Bioinformatics application,
loop-level parallelism is a common characteristic of many
scientific applications. As such, the results found herein are
applicable to a wider range of applications.

In our experiments we compare side-by-side the perfor-
mance achieved using general-purpose multi-core proces-
sor, Cell/BE, and Graphics Processor Units (GPU) systems.
The experimental results indicate that regarding the execu-
tion of the parallel section, all processors scale well. For the
general-purpose multi-core, an on-chip shared cache among
all cores helps in the scalability by providing fast across
core data communication and synchronization. The GPUs
are able to achieve the best improvement for the parallel
code section but data transfers result in a large penalty. For
the Cell/BE, the inefficient execution of the serial portion
of the code on the PPE is the reason for the overall poor
performance.

While the analysis presented here used only the fre-
quency as the scaling factor, considering other factors such
as area and power do not change significantly the con-
clusions. Overall, the general-purpose multi-core systems
achieved the best balance between an efficient parallel and
serial execution of the code resulting in the largest speedup
for MrBayes. At the same time, this was achieved with the
smallest programming effort.
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