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1 Methods

1.1 Model

The data consist of a matrix of characters D = (Dij), for i = 1..N aligned positions, and j = 1..P

taxa, each non missing cellDij being in one among S possible states (S = 4 in the case of nucleotides,

20 in the case of amino-acids). Sites of the alignment are assumed to be independent and identically

distributed (i.i.d.) from a Dirichlet process mixture of substitution processes running along a

phylogenetic tree τ . In addition, a discretized gamma distribution is assumed for modeling among-

site rate variation (Yang, 1994).

All substitution processes considered here are time-reversible. The pulley-principle therefore

applies (Felsenstein, 1981) and trees are unrooted. A uniform prior over all possible bifurcating tree

topologies is assumed and, conditional on the topology, branch lengths are i.i.d from an exponential

of mean µ. The hyperparameter µ is itself endowed with an exponential prior of mean 0.1. The

discretized gamma distribution of rates across sites is parameterized by a shape parameter α,
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endowed with an exponential prior of mean 1.

Under the most general model configuration (CAT-GTR), all sites share a same set of exchange-

ability parameters between pairs of states r = (rab)1≤a<b<S , which are i.i.d. from an exponential

of mean 1. Each component of the mixture k > 0 has its own equilbirium frequency profile

πk = (πka)a=1..S , such that the substitution rate matrix for component k is

Qkab = rab πkb,

where we use the convention that rab = rba whenever a > b, thus ensuring time-reversibility of the

process.

A Dirichlet process mixture over equilibirium frequency profiles can be seen as an infinite mix-

ture (Vk, wk, πk)k≥0, where (Papaspiliopoulos and Roberts, 2008):

Vk ∼ Beta(1, κ),

wk =
∏
l<k

(1− Vl)Vk,

πk ∼ Dirichlet(ν).

Here, κ > 0 is the concentration parameter of the Dirichlet process, and ν is a S-dimensional vector

of hyperparameters νa > 0, a = 1..S. An exponential prior of mean 10 is defined for κ, and a

product of exponential priors of mean 1 for the νa > 0, a = 1..S. In older versions (up to version

1.3), the prior on ν was truncated so that
∑

a νa > S/5 (for numerical stability reasons). Thanks to

improved numerical matrix diagonalization, this constraint has been removed starting from version

1.4.

Denoting, for i = 1..N , the allocation status of position i as ci, then ci = k with prior probability

wk. Finally, conditional on ci, the equilibrium frequencies of the amino-acid replacement process
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at site i are described by πci .

The weigths wk are decreasing geometrically in expectation (as ρk, where ρ = κ/(1 +κ)), which

implies that the weights in the right tail of the infinite series (wk)k>0, as well as their sum from k to

∞, are rapidly decreasing and converging toward 0 as k increases. This suggests that the mixture

can be truncated by letting VKmax = 1, thus setting wk = 0 for k > Kmax. The resulting finite

model is similar to previously proposed truncated Dirichlet processes (Ishwaran and James, 2001).

Here we choose Kmax = 5000.

1.2 Gibbs sampling for subtree pruning and regrafting (SPR)
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Figure S1. Pruning and regrafting subtrees (see text for details)

The Gibbs sampling algorithm proceeds as follows:

1. Choose an internal node uniformly at random and root the tree at that node.

2. Choose an internal node other than the root and its immediate descendants. Prune the

pending subtree, as in figure S1 (pruning direction), taking away the stem branch (y on figure

S1) as well as the branch upstream from y (x on figure S1), from the main tree, and leaving

all branch lengths unchanged.
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3. Update all conditional likelihood vectors around each node of the tree, as indicated on figure

S1 on the left. In figure S1, cups represent the conditional probability of the data spanned

by the subtree to the open side of the cup. For instance, cup 1 represents the vector of

conditional probabilities of the sequence data of group S, given the state at the node linking

x and y. Cups 2, 3 and 4 (on the left) are the conditional probabilities for data of groups A,

B and R, respectively, given the state at the node linking branches u and v (see also Guindon

and Gascuel, 2003; Hordijk and Gascuel, 2005).

4. Recursively scan all possible regrafting of the subtree on the main tree, each time rearranging

branches as indicated on figure S1 (grafting direction). For each regrafting position, use the

locally cached conditional likelihoods to compute the likelihood of the tree resulting from the

regrafting. On figure S1 (right hand side), this requires multiplying conditional likelihood

vectors 1 and 2, propagating their product along branch x (dashed arrow), mulitplying the

result with conditional likelihood vectors 3 and 4, and with the (site-specific) equilibrium

frequencies, then summing over all states (and over all rates of the discretized gamma dis-

tribution) at each site. Conditional likelihood vectors 1, 2, 3 and 4 were already updated at

step 3.

5. Choose among all possible regrafting points proportionally to their relative posterior prob-

abilities. In the present case, these posterior probabilities are proportional to the relative

likelihoods of each candidate tree. This is because the prior is uniform over all possible tree

topologies, and because there is a one-to-one mapping of branch lengths across all of the

candidate trees. Since the prior over branch lengths is i.i.d. across branches, the prior density

is the same for all possible regrafting points.

The entire scan represents the equivalent of less than 3 likelihood computations over the entire
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tree: one pre-order and one post-order traversal of the main tree to update all of the conditional like-

lihoods around each node, one post-order traversal of the subtree for updating the basal conditional

likelihood (cup 1), and one traversal of the main tree for testing all possible regraftings.

In a parallel framework, where each slave is in charge of a specific segment of the complete

sequence alignment, the master randomly chooses the root and the subtree to be pruned (step 1

and 2) and sends this information to all slaves, which then reroot the tree and prune it accordingly.

The update of the conditional likelihood vectors (step 3) and the complete scan of all possible

regrafting points (step 4) is done by each slave, after which each slave sends back to the master an

array of log likelihoods, containing one log likelihood (one single real number) for each regrafting

point. The master collects the arrays, sums them up over all slaves for each regrafting position

and, finally, chooses a regrafting position based on the Gibbs-sampling decision rule (step 5). The

frequency of communication between master and slaves, and the amount of information passing

through the communication channel between master and slaves, is thereby minimized.

1.3 Gibbs-Metropolis over the truncated stick-breaking prior

Classical MCMC sampling methods for truncated Dirichlet processes (Ishwaran and James, 2001)

alternate between Gibbs sampling over the allocations ci, and Metropolis Hastings updates of the

mixture variables (here the πk) and the hyperparameters κ and ν. For large mixtures, however,

this results in potentially long Gibbs sampling cycles, as each site i = 1..N of the alignment has to

be tentatively allocated to all possible components, and for each possible reallocation k = 1..Kmax,

the site-specific likelihood p(Xi | π) has to be recomputed with π = πk. In the present case, data-

augmentation leads to simple and rapidly evaluated site-specific augmented likelihoods, which take
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the following form:

p(Xi | π) ∝
S∏
a=1

πuiaa e−xiaπa ,

where, uia and xia are integral and real sufficient statistics computed based on the complete sub-

stitution history at site i (Lartillot, 2006). Yet, computing these likelihoods for all sites and for the

whole mixture can quickly become a limiting factor, and furthermore, is most probably a waste of

time for components that have negligibly small weights.

We therefore developed an alternative sampling method, which is a hybrid between Gibbs-

sampling and Metropolis-Hastings and which was inspired by (albeit distinct from) Papaspiliopoulos

and Roberts (2008). First, a threshold K0 ≤ Kmax is specified, such that the total weight of all

components above K0 is, in expectation, of the order of a pre-defined tuning parameter ε << 1.

Then, for each site i = 1..N , we propose a reallocation with probabilities determined by the posterior

weights (as in the classical Gibbs sampling algorithm) for k ≤ K0 , and proportional to the prior

weights for k > K0. In this way, we avoid recomputing the allocation-specific site-likelihoods for

the right tail of the mixture (k > K0), where the probability of accepting an allocation is effectively

limited by the small weights. In a second step, this proposal has to be accepted or rejected according

to a Metropolis-Hastings rule, so as to guarantee that the sampler leaves the posterior distribution

invariant.

Specifically, for a given site i, with current allocation ci = k1, define

pik ∝ wk p(Xi | πk) if k ≤ K0,

pik ∝ wkM if k > K0,

where M = maxk=1..K0 p(Xi | πk) and the pik are normalized, so that
∑

k=1..K pik = 1. Then,

propose ci = k with probability pik. Denote the chosen value by k2, and accept the move with
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probability min(1, R2/R1) where, for j = 1, 2, Rj = 1 if kj ≤ K0 and Rj = p(Xi | πkj )/M

if kj > K0. It can be checked that this update rule verifies the detailed balance by separately

considering each of the four sub-cases.

As for the tuning, we use ε = 0.001, and set K0 equal to the integer part of ln ε/ ln ρ, where, as

above, ρ = κ/(1 + κ). As an example, for a dataset of 30 000 positions, 50 species, at equilibrium,

κ is of the order of 200, so that K0 is of the order of 1500 to 2000. Since, at equilibrium, the

rank of the last occupied component of the mixture rarely exceeds 1500, the sampler has mixing

properties almost indistinguishable from the exhaustive Gibbs sampler, while substantially reducing

the number of likelihood evaluations (by about a factor 5).

Under the stick-breaking representation, the parallelization of the computation is straightfor-

ward. For updating allocations, each site i = 1..N can independently perform the algorithm men-

tioned above independently of all other sites. Similarly, profiles associated to each component of the

mixture can be updated independently of each other, conditional on the current allocation vector.

Finally, the weights of the mixture need to be resampled conditional on the current allocation,

which can be done by Gibbs sampling (Papaspiliopoulos and Roberts, 2008):

Vk ∼ Beta(1 +mk, κ+Mk),

wk =
∏
l<k

(1− Vl)Vk,

where mk is the number of sites allocated to component k, and Mk =
∑Kmax

l=k+1ml.

Altogether, the overall MCMC schedule for updating the mixture cycles over the following

updates:

• the weights of the mixture are resampled conditional on the current allocation vector c and

on κ, and are broadcast to all slaves;
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• conditional on the weights just received, on the current equilibrium frequency profiles (πk)k=1..Kmax

and on the site-specific sufficient statistics, each slave performs the Gibbs/Metropolis algo-

rithm introduced above for all sites under its charge;

• the new site allocations are collected by the master and broadcast to all slaves;

• non-empty components are equally distributed among slaves, and each slave performs a series

of Metropolis updates of the equilibrium frequency profiles of these components (conditional

on the new allocations), while the empty components of the mixture are resampled by the

master from the prior.

• new profiles of non-empty components are collected by the master, and all new profiles are

broadcast to all slaves (in preparation for the next cycle).

In practice, the entire series is cycled over 5 times, before moving on to other types of update

mechanisms. The latter consist of label switching moves (Papaspiliopoulos and Roberts, 2008),

which are an important ingredient for proper mixing under the stick-breaking prior, followed by

updates of the relative exchangeabilities and updates of the hyperparameters κ and α.

Validation and benchmarking

A series of 8 datasets were gathered from previously published phylogenetic analyses and were

used for conducting a detailed comparison between the old (serial) and the new (parallel) imple-

mentations under equivalent models and priors. Specifically, we used 3 alignments obtained from

TreeBase (Sanderson et al., 1994), with reference numbers M1382 (9 taxa, 1560 sites), M1487 (52

taxa, 981 sites), M2477 (39 taxa, 888 sites), three phylogenomic datasets at the level of chor-

dates (Delsuc et al., 2006), Algae (Rodŕıguez-Ezpeleta et al., 2007) and Bilateria (Lartillot and
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Philippe, 2008) and, finally, two datasets kindly provided by Frédéric Delsuc, reproducing the con-

catenations of nuclear and mitochondrial genes in 42 mammalian taxa of Springer et al. (2003),

with 4768 and 3507 aligned amino-acid positions. In the case of the three phylogenomic datasets,

a random subset of 20 genes from the original concatenations were uniformly sampled, leading to

three concatenations of 5197, 4743 and 4431 aligned positions, respectively.

For each dataset, the old and new implementations were run under the CAT-GTR model, using

the same priors in both cases. The chains were run for a total of 22 000 cycles, with two replicates

under each version. Burnins of 2 000 points were discarded and posterior means and credibility

intervals were computed for several parameters and key summary statistics (total tree length, α,

number of occupied components, mean entropy of the equilibirum frequency profiles across sites,

sum of the Dirichlet hyperparameters
∑

a νa, and entropy of the relative exchangeabilities between

pairs of amino-acids). Means and credibility intervals for these statistics are reported, for one chain

under each implementation, in table S1. Bipartition frequencies and branch lengths estimated from

two runs, one under each implementation, were plotted against each other for visual comparison

(figure S2).
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Table S1. Posterior mean and 95% credibility intervals for key statistics under the two imple-

mentations (CAT-GTR model)

old implementation MPI implementation

TreeBase M1382

tree length 3.76 ( 3.39, 4.17) 3.73 ( 3.38, 4.15 )

alpha 4.28 ( 3.01, 6.05) 4.30 ( 3.05, 6.01 )

number of components 30.92 (21.00, 43.00) 29.62 (20.00, 41.00 )

stationary entropy 1.87 ( 1.78, 1.96) 1.88 ( 1.79, 1.97 )

dirichlet weight 6.24 ( 5.17, 7.70) 6.51 ( 5.30, 8.01 )

exchangeabilities entropy 4.83 ( 4.77, 4.89) 4.83 ( 4.77, 4.89 )

TreeBase M1487

tree length 14.02 (12.69, 15.52) 14.00 (12.67, 15.44 )

alpha 1.15 ( 1.02, 1.31) 1.15 ( 1.02, 1.30 )

number of components 84.78 (61.00, 112.00) 82.96 (61.00, 109.00 )

stationary entropy 2.12 ( 2.04, 2.19) 2.13 ( 2.06, 2.20 )

dirichlet weight 8.88 ( 7.19, 10.74) 9.11 ( 7.58, 10.85 )

exchangeabilities entropy 4.57 ( 4.50, 4.65) 4.57 ( 4.49, 4.64 )

TreeBase M2477

tree length 15.43 (13.93, 17.12) 15.41 (13.92, 17.03 )

alpha 0.86 ( 0.78, 0.94) 0.86 ( 0.78, 0.94 )

number of components 82.62 (64.00, 104.00) 83.04 (65.00, 103.00 )

stationary entropy 2.20 ( 2.13, 2.26) 2.19 ( 2.13, 2.26 )

dirichlet weight 11.45 ( 9.70, 13.37) 11.49 ( 9.74, 13.38 )

exchangeabilities entropy 4.50 ( 4.43, 4.57) 4.50 ( 4.43, 4.57 )
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old implementation MPI implementation

Chordates

tree length 19.63 ( 18.64, 20.63) 19.56 ( 18.55, 20.52)

alpha 1.06 ( 1.00, 1.11) 1.06 ( 1.01, 1.12)

number of components 275.51 (246.00, 307.00) 273.92 (244.00, 310.00)

stationary entropy 1.85 ( 1.80, 1.89) 1.86 ( 1.81, 1.90)

dirichlet weight 6.52 ( 5.93, 7.16) 6.77 ( 6.09, 7.52)

exchangeabilities entropy 4.41 ( 4.36, 4.46) 4.40 ( 4.35, 4.46)

Algae

tree length 17.48 ( 16.60, 18.40) 17.39 ( 16.56, 18.25)

alpha 1.13 ( 1.07, 1.19) 1.13 ( 1.08, 1.19)

number of components 267.20 (233.00, 303.00) 268.23 (232.00, 305.00)

stationary entropy 2.02 ( 1.98, 2.06) 2.03 ( 2.00, 2.06)

dirichlet weight 8.81 ( 8.08, 9.56) 8.90 ( 8.18, 9.72)

exchangeabilities entropy 4.48 ( 4.42, 4.53) 4.47 ( 4.42, 4.53)

Metazoa

tree length 19.58 ( 18.76, 20.47) 19.53 ( 18.66, 20.40)

alpha 1.29 ( 1.22, 1.36) 1.29 ( 1.22, 1.37)

number of components 296.83 (264.00, 333.00) 294.31 (258.00, 328.00)

stationary entropy 2.01 ( 1.98, 2.04) 2.01 ( 1.97, 2.04)

dirichlet weight 7.61 ( 7.02, 8.22) 7.63 ( 7.01, 8.35)

exchangeabilities entropy 4.48 ( 4.43, 4.53) 4.48 ( 4.43, 4.53)
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old implementation MPI implementation

Mammals Mitochondrial

tree length 23.44 ( 21.89, 25.07) 23.02 ( 21.44, 24.72)

alpha 0.80 ( 0.76, 0.84) 0.79 ( 0.75, 0.84)

number of components 176.46 (154.00, 199.00) 175.91 (156.00, 198.00)

stationary entropy 1.71 ( 1.67, 1.75) 1.71 ( 1.67, 1.75)

dirichlet weight 6.10 ( 5.51, 6.73) 6.15 ( 5.55, 6.83)

exchangeabilities entropy 4.22 ( 4.14, 4.30) 4.23 ( 4.15, 4.31)

Mammals Nuclear

tree length 8.08 ( 7.85, 8.32) 8.09 ( 7.86, 8.33)

alpha 2.11 ( 1.96, 2.26) 2.11 ( 1.96, 2.28)

number of components 101.95 ( 83.00, 123.00) 101.63 ( 83.00, 122.00)

stationary entropy 2.30 ( 2.27, 2.33) 2.30 ( 2.26, 2.33)

dirichlet weight 10.64 ( 9.31, 12.09) 10.51 ( 9.16, 12.04)

exchangeabilities entropy 4.23 ( 4.18, 4.27) 4.23 ( 4.18, 4.27)
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Figure S1. Bipartition frequencies (left) and posterior mean branch lengths (right) compared

between the two implementations.
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Figure S3. Posterior consensus tree obtained for the arthropod nucleotide dataset (Regier et al.,

2010) under the GTR model. Posterior probability supports not distinguishable from 1 are not

indicated.
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Figure S4. Posterior consensus tree obtained for the arthropod amino-acid recoded dataset (Regier

et al., 2010) under the GTR model. Posterior probability supports not distinguishable from 1 are

not indicated.
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Figure S5. Posterior consensus tree obtained for the arthropod amino-acid recoded dataset (Regier

et al., 2010) under the CAT model. Posterior probability supports not distinguishable from 1 are

not indicated.

Stenochrus
Mastigoproctus

Phrynus
Aphonopelma
Heterometrus
Hadrurus

97

Idiogaryops
87

Amblyomma
Leiobunum93

64

Prokoenenia
Cryptocellus99

Eremocosta
Dinothrombium99

93

64

Carcinoscorpius
Limulus

Endeis
Colossendeis99

Ammothea
Achelia

Tanystylum96
76

88

Limnadia
Daphnia

Lynceus
Triops

Streptocephalus
Artemia

Eurytemora
Acanthocyclops

Mesocyclops

99

Nicoletia
Ctenolepisma

Libellula
Ischnura
Ephemerella

Hexagenia
99

Acheta
Periplaneta80

Forficula
Prodoxus
Cydia
Antheraea

Machiloides
Pedetontus

Eumesocampa
Metajapyx

Tomocerus
Orchesella92

Podura
99

Speleonectes

79

98

Derocheilocaris
Skogsbergia
Harbansus

Cypridopsis94
Armillifer

Argulus
Armadillidium

Libinia
Neogonodactylus99

Nebalia
Loxothylacus

Lepas
Chthamalus
Semibalanus99

98

Hutchinsoniella

57

Eurypauropus
Scutiger
Hanseniella

Polyxenus
Polyzonium

Abacion99
Narceus

55

Craterostigmus
Scolopendra
Lithobius

Scutigera
Peripatus

Euperipatoides
Peripatoides

Milnesium
Thulinius

1

18



Figure S6. Posterior consensus tree obtained for a dataset comprising 38 330 aligned positions for

66 animal taxa (Philippe et al., 2011) under the CAT-GTR model. Posterior probability supports

not distinguishable from 1 are not indicated.
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