
Copyright

by

Derrick Joel Zwickl

2006

The Dissertation Committee for Derrick Joel Zwickl
Certifies that this is the approved version of the following dissertation:

GENETIC ALGORITHM APPROACHES FOR THE
PHYLOGENETIC ANALYSIS OF LARGE

BIOLOGICAL SEQUENCE DATASETS
UNDER THE MAXIMUM LIKELIHOOD CRITERION

Committee:

David M. Hillis, Supervisor

David C. Cannetella

Robin R. Gutell

Robert K. Jansen

Tandy Warnow

GENETIC ALGORITHM APPROACHES FOR THE
PHYLOGENETIC ANALYSIS OF LARGE

BIOLOGICAL SEQUENCE DATASETS
UNDER THE MAXIMUM LIKELIHOOD CRITERION

by

Derrick Joel Zwickl, B.S.

Dissertation
Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin
May, 2006

Dedication

To John Conaway and Maria Truong.

v

GENETIC ALGORITHM APPROACHES FOR THE

PHYLOGENETIC ANALYSIS OF LARGE

BIOLOGICAL SEQUENCE DATASETS

UNDER THE MAXIMUM LIKELIHOOD CRITERION

Publication No._____________

Derrick Joel Zwickl, Ph.D.

The University of Texas at Austin, 2006

Supervisor: David M. Hillis

Phylogenetic trees have a multitude of applications in biology, epidemiology,

conservation and even forensics. However, the inference of phylogenetic trees can be

extremely computationally intensive. The computational burden of such analyses

becomes even greater when model-based methods are used. Model-based methods have

been repeatedly shown to be the most accurate choice for the reconstruction of

phylogenetic trees, and thus are an attractive choice despite their high computational

demands. Using the Maximum Likelihood (ML) criterion to choose among phylogenetic

trees is one commonly used model-based technique. Until recently, software for

performing ML analyses of biological sequence data was largely intractable for more

vi

than about one hundred sequences. Because advances in sequencing technology now

make the assembly of datasets consisting of thousands of sequences common, ML search

algorithms that are able to quickly and accurately analyze such data must be developed if

ML techniques are to remain a viable option in the future.

I have developed a fast and accurate algorithm that allows ML phylogenetic

searches to be performed on datasets consisting of thousands of sequences. My software

uses a genetic algorithm approach, and is named GARLI (Genetic Algorithm for Rapid

Likelihood Inference). The speed of this new algorithm results primarily from its novel

technique for partial optimization of branch-length parameters following topological

rearrangements. Experiments performed with GARLI show that it is able to analyze large

datasets in a small fraction of the time required by the previous generation of search

algorithms. The program also performs well relative to two other recently introduced fast

ML search programs.

Large parallel computer clusters have become common at academic institutions in

recent years, presenting a new resource to be used for phylogenetic analyses. The P-

GARLI algorithm extends the approach of GARLI to allow simultaneous use of many

computer processors. The processors may be instructed to work together on a

phylogenetic search in either a highly coordinated or largely independent fashion.

Preliminary experiments suggest that analyses using the P-GARLI software can result in

better solutions than can be obtained with the serial GARLI algorithm.

vii

Table of Contents

List of Tables ..ix

List of Figures..x

Chapter 1: Background...1
1.1 Motivation ..1
1.2 Phylogenetic inference..2
1.3 The Maximum Likelihood criterion ..7
1.4 Maximum Likelihood heuristics..13

Chapter 2: The Serial GARLI Algorithm..22
2.1 Introduction ..22
2.2 Algorithm Overview ...22
2.3 The Fitness Function...28
2.4 Mutation operators..31
2.5 Branch-length optimization...40
2.6 Memory requirements...51

Chapter 3: Performance of the Serial GARLI Algorithm52
3.1 Introduction ..52
3.2 Methods..54
3.3 Results and Discussion ...66
3.4 Conclusions ..86
Supplemental Information ...88

Chapter 4: The Parallel GARLI Algorithm ..89
4.1 Introduction ..89
4.2 The P-GARLI Algorithm ..90

Chapter 5: Performance of the Parallel GARLI algorithm..................................99
5.1 Introduction ..99
5.2 Methods..99

viii

5.3 Results and Discussion ...103
5.4 Conclusions ..108

References ...109

Vita ..115

ix

List of Tables

Table 2-1. Relative reproduction probabilities of two individuals differing
by 1.0 lnL unit for various values of the selection intensity, s.30

Table 3-1. Times required to obtain parsimony starting topologies66

Table 3-2. Optimized log-likelihood and parsimony scores of topologies
selected as GARLI starting points..70

Table 3-3. Results of GARLI analyses performed with parsimony starting
topologies. ...72

Table 3-4. Results of GARLI analyses performed with random starting
topologies ..73

Table 3-5. P-values resulting from Kruskal-Wallis nonparametric tests73

Table 3-6. Results of RAxML and PHYML analyses performed on the five
real datasets. ..81

Table 3-7. Topological similarity of results obtained by GARLI, RAxML
and PHYML..85

Table 3-8. Topological accuracy of analyses performed on simulated
datasets..85

Table 5-1. Optimized scores and runtimes of P-GARLI analyses of the
Gutell3845 dataset. ..104

x

List of Figures

Figure 2-1. A schematic view of the GARLI algorithm.23

Figure 2-2. The reconnection distance ..33

Figure 2-3. Reconnection distances on a real topology34

Figure 2-4. The relationship between the length of three arbitrarily chosen
branches and the total tree log-likelihood of the ML topology for the
64-taxon dataset of Hillis and Wilcox (1995)...42

Figure 2-5. Progression of the GARLI branch-length optimization algorithm
over a topology following an SPR rearrangement48

Figure 3-1. The relationship between parsimony and likelihood scores of
topologies obtained by parsimony searches in PAUP*..........................67-69

Figure 3-2. Results of GARLI runs performed on the Angio dataset74

Figure 3-3. Results of GARLI runs performed on the Rbcl dataset75

Figure 3-4. Results of GARLI runs performed on the 1000ARB dataset76

Figure 3-5. Results of GARLI runs performed on the Gutell3845 dataset77

Figure 5-1. Optimized lnL scores of the solutions resulting from P-GARLI
analyses of the Gutell3845 dataset ...105

Figure 5-2. Runtimes vs. lnL scores for parallel analyses of the Gutell3845
dataset ..106

1

Chapter 1: Background

1.1 MOTIVATION

It is now widely accepted among biologists that an understanding of the evolution

of a group of organisms requires an understanding their phylogenetic relationships. In

addition to their importance in systematic studies, phylogenetic methods present many

other applications such as prediction of the evolution of infectious diseases (Bush et al.,

1999), the discovery of new drugs (Brown and Warren, 1998), planning conservation

priorities (Faith, 1992), and even forensics (Ou et al., 1992). The recent shift toward an

appreciation of the importance of phylogenetics in many biological fields is further

underscored by the large amount of NSF funding put toward projects such as

“Assembling the Tree of Life” (ATOL: atol.sdsc.edu) and “Cyberinfrastructure for

Phylogenetic Research” (CIPRES: www.phylo.org).

It has also become well accepted that probabilistic model-based methods are the

superior choice for phylogenetic inference, in part because of studies demonstrating their

higher accuracy (Huelsenbeck and Hillis, 1993; Huelsenbeck, 1995; Rosenberg and

Kumar, 2001; Zwickl and Hillis, 2002). These methods include those based on the

maximum likelihood criterion (Felsenstein, 1981) and more recently developed Bayesian

techniques (Rannala and Yang, 1996; Mau et al., 1999; Huelsenbeck and Ronquist,

2001). The primary drawback of these methods is higher computational costs relative to

alternative methods.

When first suggested as an optimality criterion for phylogenetic tree inference

(Felsenstein, 1981), maximum likelihood (ML) analyses were impractical due to limited

computational resources. As computing power and availability have grown tremendously

over the last decade, it has allowed ML analyses to become commonplace. However,

2

increases in available sequence data currently outpace increases in computing speed,

leaving phylogeneticists once again limited in their ability to perform ML analyses. The

motivation for the development of the GARLI algorithm (Genetic Algorithm for Rapid

Likelihood Inference) is to ensure that ML phylogenetic inference will continue to be a

reasonable option despite large increases in dataset sizes. This necessity has been

recognized by a number of researchers, and has resulted in several new ML inference

programs that increase the speed of model-based inference through a variety of

algorithmic enhancements (e.g. MetaPIGA: Lemmon and Milinkovitch, 2002; PHYML:

Guindon and Gascuel, 2003; RAxML: Stamatakis et al., 2005; IQPNNI: Vinh and von

Haeseler, 2004).

This chapter presents background material important for the GARLI algorithm,

and for understanding its place in the field of phylogenetic inference. I begin with a

general orientation to the problem of phylogenetic inference, and of the techniques

available to perform such inference. Methodological details relating to the use of the ML

optimality criterion will then be discussed. Finally, a discussion of heuristic methodology

and a survey of relevant phylogenetic search algorithms will be presented, with special

emphasis on ML heuristics.

1.2 PHYLOGENETIC INFERENCE

Terminology

The goal of phylogenetic inference is to obtain a branching structure representing

the evolutionary history of a set of organisms using a set of data that describes some

aspect of the organisms. Discussion here will be limited to unrooted, strictly-bifurcating

tree topologies, although other potential types of evolutionary relationships between

organisms exist (e.g., see Moret et al., 2004). I will begin by defining the component

3

parts of a tree. Differing sets of terminology are used by researchers in the field. Tree will

be used interchangeably with the term topology. The tips of the tree, representing the

observed data on which the inference is based, will be termed terminal nodes or taxa (also

leaves or tips). The connections between taxa will be referred to as branches (also edges),

each of which may be assigned a numerical value representing its length. Branch lengths

represent some measure of evolutionary distance between nodes, with the exact definition

depending on the inference method. Branches are also referred to as bipartitions, because

each branch divides the taxa on either side of it into two non-overlapping sets. Branches

intersect at internal nodes or vertices, which represent hypothetical ancestral taxa. By

definition, all internal nodes of an unrooted bifurcating tree will be of degree three (i.e.,

connected to exactly three branches).

Orienting a topology with respect to time, known as rooting, is not typically

considered part of the topology search per se. Most tree inference methods do not seek to

distinguish between potential rootings of a particular unrooted topology, and thus the task

of orienting the tree with respect to time usually occurs after tree inference. The most

common method is to include outgroup taxa which are assumed a priori to be less closely

related to any of the ingroup taxa of interest than the ingroup taxa are to one another.

Topologies represented in figures and computer implementations are often oriented by

choosing an arbitrary internal node to be designated as the effective root, although the

tree technically remains unrooted. No additional meaning is assigned to this node, and the

score of the tree is independent of the node chosen. The root lies at the “bottom” of the

tree, and all internal and terminal nodes lie above it.

Restricting consideration to only bifurcating topologies is a choice of

convenience. The consideration of trees containing nodes of degree greater than three,

termed polytomies or multifurcations, increases the number of possible topologies and

4

complicates computer implementations. Polytomies are typically used to represent

uncertainty about the relationships in a region of a topology. This uncertainty may arise

because of either insufficient or conflicting signal present in the data. Note that computer

implementations allowing zero or near-zero branch lengths are able to represent

topologies essentially equivalent to those containing polytomies while still maintaining

their technically bifurcating nature. Any unrooted bifurcating tree for n taxa will contain

exactly (2n-3) branches and (n-2) internal nodes.

Input data

Phylogenetic inference may be performed using a variety of data types. The data

are typically represented in the form of a matrix in which rows represent taxa and

columns represent individual characters. Each character may be thought of as an

independent data point containing information about the relationships between the taxa.

Early phylogeneticists primarily used morphological characters, the physical attributes of

the organisms. In theory, inference may be performed using any characters that are

inherited and are able to change over evolutionary time. Modern phylogenetic inference

is performed primarily on biological sequence data, such as DNA, RNA or protein

sequences representing the same gene in each of the organisms. Sequence data are

composed of a series of characters drawn from a limited alphabet. These characters are

referred to as bases or nucleotides in the case of DNA (A, C, G and T) and RNA (A, C, G

and U) sequence, and amino acids in the case of protein sequence (A, C, D, E, F, G, H, I,

K, L, M, N, P, Q, R, S, T, V, W and Y). The preference for sequence data is primarily

due to the ease and speed with which many characters can be gathered and the tractability

of statistically modeling the process of sequence evolution.

Before phylogenetic inference may be performed on sequence data, the sequences

obtained for each taxon must first be aligned such that all characters within a column of

5

the data matrix are homologous. This means simply that the characters are related by a

common evolutionary history. Note that this step of alignment would be unnecessary (or

at least easier) if the processes of character insertion and deletion did not cause variation

in the length of the sequences among the taxa. Alignment methods range from fully

automated heuristic algorithms that attempt to find the best alignment based on a

parsimony criterion (e.g., Higgins et al., 1994), to more intensive hands-on methods that

incorporate information about the structure and function of the sequences being aligned

(e.g., Woese et al., 1980). Regardless of how the alignment is generated, it is typically

fixed once it has been entered into phylogenetic software. Note, however, that several

methods for simultaneously inferring alignment and phylogeny have recently been

developed (Redelings and Suchard, 2005; Lunter et al, 2005; Fleissner et al., 2005). The

remainder of this work will be concerned solely with phylogenetic inference performed

on aligned nucleotide sequence data.

Phylogenetic inference methods

A number of distinct methodologies exist for choosing the “best” tree topology

given a set of aligned sequences. The methodologies may be roughly divided into three

main categories. First, distance-based methods use sequence similarity to obtain an

estimate of the pairwise evolutionary distance between taxa, and use those distances to

construct or choose a topology. Second, parsimony-based methods seek the topology that

minimizes the number of inferred evolutionary changes. Third, model-based methods

(i.e., maximum likelihood and Bayesian techniques) use an explicit model of character

evolution to identify topologies that are highly probable given the data. Over the past 30

years researchers have argued over which of the methods should be preferred based on

both philosophical and performance based arguments. Often these disagreements have

not been cordial, and some have gone so far as to describe them as “wars” (see Hull,

6

1998). In more recent years there has been a general movement toward the acceptance of

model-based methods, based largely on studies demonstrating their statistical consistency

(Rogers, 2001), superior accuracy (Huelsenbeck and Hillis, 1993; Huelsenbeck, 1995;

Rosenberg and Kumar, 2001; Zwickl and Hillis, 2002), and robustness to model

violations (Fukami-Kobayashi, and Tateno, 1991).

Large tree inference

Both the increased availability of DNA sequence data and advances in

computational power are making it possible to assemble and analyze datasets of sizes

previously thought impossible. It has frequently been shown that increasing the number

of sequences analyzed can increase the accuracy of the inferred trees under realistic

conditions (e.g., Hillis, 1996; Poe, 1998; Zwickl and Hillis, 2002), especially when the

amount of evolutionary divergence between taxa is large. However, some continue to

refute this viewpoint (e.g., Rosenberg and Kumar, 2001; 2003; Rokas and Carroll, 2005).

Although the accuracy of inference may sometimes increase with increased sampling of

taxa, the magnitude of the inference problem doubtlessly increases to a much greater

degree. Define T(n) as the number of possible unrooted bifurcating topologies for n taxa:

€

T(n) = (2i − 5)
i= 3

n

∏

Thus, T grows factorially with increasing n, and becomes almost unimaginably large for

n > 50 (e.g., T(50) ≈ 2.84x1076). Enumeration and evaluation of all possible topologies

clearly cannot be considered an option, regardless of the optimality criterion used. The

only feasible approach is to apply heuristic methods that seek the optimal solution but

have no guarantee of finding it.

7

1.3 THE MAXIMUM LIKELIHOOD CRITERION

The basic premise of the ML optimality criterion is to choose the topology that

makes the observed data the most probable. The simplest parsimony and pairwise

distance-based methods are able to calculate the unique score of a topology T given only

the data. In contrast, calculating the likelihood score of a topology requires branch-length

values for all (n-3) branches and an explicit model describing how sequences evolve over

time. Define B as a parameter vector containing the lengths of all branches, and M as a

vector of evolutionary model parameters. Branch lengths are typically measured in units

of the expected numbers of substitutions per nucleotide site, as will be discussed further

below. The number of elements in M and their definitions vary depending on which of

the many described nucleotide models is chosen.

More formally, the ML criterion seeks to maximize the likelihood (L) of the

variables (T, B and M) given the data, D. The likelihood is proportional to the probability

of D given the variables:

€

L(T,M,B |D)∝P(D |T,M,B)

Often it is an estimate of T that is the primary goal of phylogenetic analyses, with B and

M considered “nuisance parameters”. However, because the likelihood of any topology

depends also on the values of B and M, these parameters are important even if their

values are not of particular interest. For this reason, when the likelihood scores of

topologies are compared, it is generally on the basis of their maximized likelihood. This

is simply the largest possible likelihood score for a particular T across all possible values

of B and M . The values of B and M that result in the maximized likelihood will be

denoted B̂ and M̂ , and represent the maximum likelihood estimates of those parameters

8

given that tree. There is not an analytical way of solving for B̂ and M̂ given a topology,

and so the maximized likelihood is obtained by one of a number of numerical

optimization techniques such as the Newton-Raphson method or Brent’s method (see

Press et al., 1992). It is this numerical optimization step that constitutes the majority of

the computation in typical ML analyses.

Models of sequence evolution

The sequence evolution models typically used in ML phylogenetic analyses are

classified as time-reversible Markov models; they are not directed with respect to time,

and that the probability of any substitution depends solely on the current state. Models

have been developed for various sequence types, such as sequences of nucleotides, amino

acids, and codons. The present discussion will concern only nucleotide-based models.

The most general time-reversible nucleotide model is termed, aptly enough, the General

Time-Reversible model (GTR: Lanave et al., 1984). The parameters of the GTR model

include equilibrium frequencies of the four nucleotides ("A, "C, "G and "T) and six

parameters representing the relative rates of substitution between each nucleotide pair (a,

b, c, d, e, f). Note that although this amounts to ten parameters, only eight of the

parameters may be considered free because the equilibrium frequencies must sum to one

and the f rate is typically fixed to ensure identifiability of the remaining relative rates.

These parameters are used to define a matrix Q, where Qij represents the instantaneous

rate of substitution from base i to base j. Using the convention of ordering the bases in

alphabetical order (A, C, G, T):

−

−

−

−

=

GCA

TCA

TGA

TGC

fec

fdb

eda

cba

Q

πµπµπµ

πµπµπµ

πµπµπµ

πµπµπµ

9

The diagonal elements of Q are the negative sum of the other elements in each row, and

are omitted for clarity. µ represents the mean instantaneous substitution rate. Q must be

rescaled such that the mean substitution rate is equal to one in order to maintain the

proper definition of branch lengths as the expected number of substitutions per site.

Given model parameters describing the instantaneous substitution process, the

probabilities of observing state i at one end of a branch of length t and state j at the other

may be obtained from the matrix P, which is defined thusly:

P=eQt

There is no closed form expression for P under the GTR model, and it must be calculated

via eigen-decomposition or other numerical methods. Note that all reversible nucleotide

substitution models are nested within the GTR model, and may be obtained by fixing

some of the parameters of this most general model. The present work is concerned only

with the GTR model.

It has been repeatedly demonstrated that a very important component of models of

sequence evolution is the accommodation of rate heterogeneity, variation in evolutionary

rate between nucleotide sites (Sullivan et al., 1995). Some form of rate heterogeneity is

now implemented in nearly all phylogenetic software, although there are multiple

approaches. Two will be discussed here, referred to as discrete gamma rate heterogeneity

(GRH: Yang, 1993, 1994) and site-specific rate heterogeneity (SSRH: Olsen et al., 1994).

In both forms the branch lengths associated with a topology retain their meaning as the

mean number of substitutions per site. Variation in rates is achieved by multiplying these

mean values by rate modifiers representing rates either faster or slower than the mean.

10

GRH assumes that the distribution of relative rates of substitution across sites can be

described by a gamma distribution with a fixed mean of one. Given a value of the gamma

shape parameter, α , the gamma probability distribution is divided equally into k

categories (often four). The rate multipliers are taken as the means of these categories.

The likelihood of each site is then defined as the average likelihood of that site over the

rate multipliers. Because GRH requires averaging likelihoods across k rates, it requires k

times more computation than assuming constant rates across sites. The SSRH model

differs primarily in the fact that a particular rate modifier is assigned to each site, either

by a priori specification or by estimating the rate modifier outright. Because each site is

only scored for a single rate, use of SSRH does not result in a significant increase in

computation. Note that including GRH in a model adds only a single extra parameter, the

α shape parameter of the gamma distribution. In contrast, the relative rate of each site

becomes a separate parameter under SSRH. Thus, each method has its own advantages,

and there is not a clear way of choosing between them. GRH should be preferred on

statistical grounds and SSRH on computational grounds.

 Another aspect of rate heterogeneity observed in real datasets is presented by

sites that are invariable, or unable to change over the tree. These sites may be

accommodated in sequence evolution models by adding a class of sites with a rate

modifier of zero, and estimating the proportion of sites in that category (Gu et al., 1995).

This model parameter may be used alone or in conjunction with GRH, and in either case

the total likelihood is calculated as a weighted average of the likelihood values across all

rate categories.

Model choice

Often the numerical values and the meaning of evolutionary model parameters are

not of particular interest. This does not suggest that they are unimportant, as it has been

11

shown that ML tree inference is most accurate when an appropriate model is used (e.g.,

Sullivan and Swofford, 1997, Posada and Crandall, 2001). Choosing a model that is too

simple (underfitting) causes the model to be unable to fully capture the process of

substitution that generated the data, and can reduce the accuracy of tree inference.

Choosing a model that is overly complex (overfitting) may reduce the power of tree

inference because some parameters may fit random noise present in the data rather than

true phylogenetic signal. With real biological data, any model we choose will inherently

be a simplification, and so our task is to choose the best available model, rather than

“true” model. The two methods of model choice commonly used by phylogeneticists are

the hierarchical likelihood ratio test (Goldman, 1993) and Akaike’s information criterion

(Akaike, 1973). These methods differ significantly in their philosophy, but it practice

generally give similar results.

Calculating the likelihood

I will now briefly discuss the methodology used to calculate the likelihood of a

topology T, given a set of branch lengths B and a set of model parameters M. A more

detailed treatment is given by Swofford et al. (1996). First, consider the likelihood of a

“tree” consisting of a single branch of length t connecting two sequences. M and t are

first used to calculate the matrix P, which gives the probability of observing each

possible pair of bases at opposite ends of the branch. The likelihood of a single site, for

example an A at one end and a C at the other end of the branch, may then be obtained

directly from P. Because sites are assumed to evolve independently, the likelihood of the

two sequences is simply the product of the likelihoods of each site.

Now consider the calculation of the likelihood for a single nucleotide site over a

tree consisting of greater than two taxa. The site likelihood is then equal to the sum of the

likelihoods of the observed data across all possible combinations of states at internal

12

nodes. Fortunately, the pruning algorithm of Felsenstein (1981) allows the calculation of

the site likelihood without requiring calculation of the likelihoods of each of the 4(n-2)

possible assignments of unobserved states at the internal nodes. To perform the

calculation, the topology is first oriented by choosing an arbitrary internal node as the

effective root. The algorithm then requires the calculation of conditional likelihoods at

each internal node. The conditional likelihoods at each node represent the likelihood of

observing the terminal states within the subtree defined by that node, conditional on a

particular unobserved state at that node. The calculation of the conditional likelihoods for

a particular internal node depends only on the branches and nodes (internal or terminal)

immediately above it. Thus, a post-order traversal of the tree may be used to calculate all

of the conditional likelihoods. The conditional likelihood values at the root node

represent the likelihood of the entire topology, conditional on each potential state at the

root. Finally, the total site likelihood is equal to the sum over root states of the likelihood

conditional of each root state times the probability of each root state (the equilibrium base

frequencies). When the likelihood of multiple characters is calculated over a topology,

conditional likelihoods must be calculated for each site independently. Because sites are

assumed to be independent, the total likelihood of a set of sequences may be obtained as

the product of the likelihoods of each column of the data matrix, known as the site

likelihoods. Because this product of the site likelihoods quickly becomes a very small

number, it is typically represented as a log-likelihood, or lnL.

The conditional likelihoods calculated for each internal node are of particular

interest because they may be reused in future likelihood calculations. If no change is

made to the topology or branch lengths within the subtree on which the conditional

likelihoods are based, the previous values remain valid and do not require recalculation.

Efficient ML implementations take advantage of this fact by storing the previous

13

computations and only recalculating those conditional likelihoods that have changed.

Note that because the evolutionary model parameters by definition apply to the entire

tree, any change to the components of M requires the recalculation of all conditional

likelihoods.

1.4 MAXIMUM LIKELIHOOD HEURISTICS

Heuristic methodology

Because it is computationally intractable to evaluate more than a small proportion

of the possible topologies for a dataset of any size, the only feasible approach is to apply

heuristics. Typical ML branch-swapping heuristics, as typified by PAUP* (Swofford,

2002) and fastDNAml (Olsen et. al, 1994), search by obtaining a starting topology and

then making rearrangements to it in an effort to find more optimal topologies. One

common way of generating the starting topology is by the stepwise-addition method (see

Swofford et al., 1996), which sequentially adds one taxon at a time to a growing tree. All

possible attachment points of each successive taxon are attempted, and each is added at

the location that results in the optimal score. When searching begins, each topology

generated by a rearrangement is evaluated, and if a better scoring topology is encountered

it becomes the topology to which further rearrangements will be made. This type of

heuristic approach is described as “greedy” (because once a choice is made it cannot be

reversed) and “hill-climbing” (because only new topologies that improve the score are

considered).

Heuristic methodology depends on the existence of a correlation between the

score of a particular topology and the score of other topologies that are “near” it in some

sense. Most simply, we may judge the closeness of two solutions in the search space by

the number of rearrangements necessary to convert between them. Thus, the geography

14

of the search space (generally termed “tree-space” in the phylogenetic context) may be

defined by the method used to move through the space. Phylogenetic heuristics most

commonly terminate when a topology is reached from which no rearrangement will

create a better scoring solution. Such a position is an optimum in tree-space, although it

may not be the global optimum that is the ultimate goal of the search. The presence of

local topological optima is an unfortunate but not uncommon feature that complicates

phylogenetic searches. Multiple optima have been studied primarily in the context of

parsimony methods (e.g., Maddison, 1991), but exist for the ML criterion as well. Note

that for heuristic methods that apply rearrangements in a deterministic and ordered

fashion, the identity of the starting topology uniquely determines the optimum at which

the search will terminate if multiple optima exist. Typically such searches are run

multiple times from different starting topologies to increase the probability that the global

optimum is found.

Several standard topological rearrangement types are used in phylogenetic

heuristics (see Swofford et al., 1996 for more details). These are termed Nearest

Neighbor Interchange (NNI), Subtree Pruning and Regrafting (SPR) and Tree Bisection

and Reconnection (TBR). The three rearrangement types are nested, such that the NNI

rearrangements are a subset of the SPR rearrangements, which are in turn a subset of the

TBR rearrangements. The number of unique NNI, SPR and TBR rearrangements possible

from any bifurcating unrooted topology containing n taxa are O(n), O(n2) and O(n3),

respectively (Allen and Steel, 2001).

Enhanced branch-swapping heuristics

Typical ML branch-swapping heuristics calculate the maximized likelihood of

each topology examined by performing full branch-length optimization. Optimization of

model parameters may also optionally be performed. Some programs (e.g., PAUP*) only

15

perform this full optimization step if an initial rough estimate of the likelihood is within a

specified threshold of the likelihood of the current topology. Regardless, this branch-

length optimization step is the limiting factor in the number of topologies that may be

evaluated. This fact has been recognized by the developers of two recently released ML

heuristic search algorithms, PHYML (Guindon and Gasquel, 2003) and RAxML

(Stamatakis et. al, 2005). Both programs implement enhancements that reduce the burden

of branch-length optimization in the evaluation of new topologies. Although these

programs are not widely used, they are currently the best available ML heuristics. A more

detailed examination of the details of these algorithms will prove instructive.

The PHYML algorithm begins by constructing a starting tree by the fast distance-

based BIONJ method (Gasquel, 1997) and estimating model parameters on that tree. It

then calculates the lnL scores obtainable by applying each possible NNI rearrangement to

the topology. However, instead of fully optimizing all branches of each of the topologies

generated by an NNI, PHYML only finds the optimal length for the one new bipartition

created by each swap. The algorithm then ranks the increases in lnL attainable by all of

the rearrangements, and applies a proportion of those that increase the likelihood over

that of the starting tree. The resulting topology is then used as the starting point for the

next round of the algorithm, and model parameters are estimated again.

The PHYML algorithm has several features of note. First, only very localized

rearrangements and branch-length optimizations are performed. Second, because score

improvements due to rearrangements in different parts of the tree are assumed to be

largely independent and additive, multiple rearrangements may be applied

simultaneously. Third, because both the BIONJ method of obtaining the starting topology

and the swapping algorithm are completely deterministic, PHYML will always return the

same topology for a particular dataset unless the user provides a different starting tree.

16

The RAxML program is derived from fastDNAml (Olsen et al., 1994), but makes

important algorithmic enhancements. It first creates a starting tree using stepwise

addition under the parsimony criterion, and roughly optimizes model parameter values.

SPR branch-swapping is then performed, with the constraint that the branches to which a

pruned subtree may be reattached are limited by their distance from the branch where the

subtree was initially pruned. All allowable SPR rearrangements from the current topology

are attempted, and the lnL scores of the resulting topologies are calculated after only

applying optimization to the three branches directly affected by the rearrangement. The

20 best scoring topologies resulting from the rearrangements are then subjected to full

branch-length optimization, and the most optimal is accepted as the next topology. Model

parameters are then reestimated and the entire procedure is repeated. Note that unlike the

PHYML algorithm, the ability to use random taxon-addition sequences to obtain the

stepwise addition starting tree allows RAxML to return different topologies if run

multiple times, even though the swapping algorithm is deterministic. Like PHYML,

RAxML localizes both rearrangements and branch-length optimization.

Stochastic heuristics

The ML heuristics discussed thus far are deterministic in their application of

branch swapping, and only attempt each rearrangement once. Another class of heuristic

methods incorporates stochasticity in the search strategy. This class includes simulated

annealing approaches and evolutionary algorithms. These methods apply rearrangements

in a random fashion, meaning that both the path of the search through tree space and the

final solution obtained can vary even when the search is started from the same topology.

This property could be viewed as either a benefit or drawback. Regardless, the intent of

introducing stocasticity into the search is not to cause this lack of repeatability, but to

exploit other theoretical benefits.

17

Simulated annealing algorithms are similar in nature to the hill-climbing

algorithms discussed thus far, with the important distinction that they are able to accept

rearrangements that decrease the likelihood score. Although it is somewhat counter-

intuitive that accepting topological changes that reduce the likelihood should be

desirable, it is only by allowing such movements that a local optimum can be escaped.

The probability of accepting a topology that worsens the score depends both on the

difference in lnL between the current and proposed states and on a control parameter.

This control parameter is slowly changed over the course of a search, reducing the

probability of accepting rearrangements that worsen the likelihood. It has been shown

(although not specifically for phylogenetic problems) that if the control parameter is

changed at the optimal rate the simulated annealing algorithm is guaranteed to return the

optimal solution (Lundy and Mees, 1986). Simulated annealing algorithms for ML

phylogenetic searches have been implemented by Salter and Pearl (2001) and Stamatakis

(2005).

Genetic algorithms

Genetic algorithms (GAs) belong to a class of heuristic methods known

collectively as evolutionary computation. The other general categories of evolutionary

computation are known as evolutionary strategies and evolutionary programming. The

distinctions between these techniques are rather subtle, and unimportant here. All depend

on the concept of evolving a more optimal solution to a problem through the repeated

application of mutation, selection and reproduction. The primary differences between

them lie in the selection scheme and in whether a crossover or recombination technique is

used to create new solutions by combining existing ones.

Unlike the phylogenetic search algorithms discussed thus far, the state of a

genetic algorithm at any point in time is represented not by a single solution in the search

18

space, but rather by a group of individual solutions. The individual solutions will be

referred to simply as individuals (also commonly called “chromosomes”), with the

collection of individuals existing at the same point in time making up a population.

Typical population sizes range from 50 to 1000 (Mitchell, 1996). The unit of time over

which one round of mutation, selection and reproduction occur is termed a generation.

Selection is applied to the population through a selection function that relates the

optimality of each individual to its probability of reproduction. Thus, the individuals in

the population compete to be the parents of future generations of individuals. Selection

functions may be divided into two main types, termed rank-based and fitness-

proportional. The definitions of these are intuitive, with the first basing the probability of

reproduction solely on the rank of the individual’s score in the population and the second

taking into account the magnitude of the differences in scores.

Functions acting on the individual solutions are termed “operators”. Mutation

operators alter some portion of the individual solutions, changing their score. The first

GAs (Holland, 1975) encoded their solutions as simple binary strings, and mutation

operators simply changed individual bits in the strings. Unfortunately, such a tractable

representation has not been developed for phylogenetic trees, making the implementation

of mutation operators more complicated. The standard rearrangement types discussed

previously function as reasonable topological mutation operators. However, the best way

of obtaining branch-length values after a rearrangement is not obvious, and presents one

of the largest challenges in the implementation of a GA for ML tree inference. If model

parameters are also encoded as part of the individual, their continuous nature allows for

easy implementation of mutation operators. An important part of most traditional GA

implementations is the use of a recombination or “crossover” operator that can be used to

bring together highly fit portions of two separate individuals into a single solution. The

19

optimal implementation of recombination operators in the context of a phylogenetic GA

is also not obvious.

GAs share with simulated annealing algorithms the ability to escape from local

optima by moving through valleys of lower fitness in the search space. The use of

recombination operators to bring together portions of multiple solutions also allows for

“jumping” through the search space and escaping local optima. Typical GAs seek to

maintain a large amount of variation in the solutions present in the population over the

course of a search, and expect to lose this variation as the population eventually

approaches the global optimum. This process is termed convergence, and loss of variation

in the population before reaching the global optimum is known as premature

convergence. The rate of convergence is dependent primarily on the strength of selection

and the population size.

Genetic algorithms for phylogenetic inference

The most important details of any GA implementation are the selection function

and the implementations of the mutation and recombination operators. A number of

researchers have developed GAs to search the space of phylogenetic trees, under both the

parsimony (Moilanen, 1999; Congdon, 2001) and ML criteria (Matsuda, 1996; Lewis,

1998; Lemmon and Milinkovitch, 2002; Brauer et al., 2003). I will focus on the most

recently developed ML algorithms.

The GAML program (Lewis, 1998) and its parallel implementation (Brauer et al,

2003) served as the progenitors to GARLI, both in terms of their general algorithm

structure and in their code base. The code for GAML has been almost entirely rewritten,

and significant differences in the mutation types, implemented models and selection

process warrant its new name. GAML used a rank-based fitness function, and

implemented only the HKY model of sequence evolution (Hasegawa, Kishino and Yano,

20

1985), with empirical base-frequency estimates and gamma-distributed rate

heterogeneity. SPR rearrangements were the sole topological mutation operator, and after

a rearrangement branch-length values maintained their previous values. Model

parameters and branch lengths were mutated by multiplying them by a gamma-

distributed random variable with mean one. GAML implemented a recombination

operator in which a subtree is first randomly chosen in one individual. A second

individual is then randomly chosen, and the taxa present in the chosen subtree are

removed from the second individual. The chosen subtree is then grafted onto the second

individual at a random branch. The parallel implementation of GAML applied an

identical algorithm, but distributed the task of calculating the likelihood of topologies

generated by the mutation and recombination operators across multiple processors. It has

been noted that the fact that GAML performed no branch length optimization following

rearrangements almost certainly hampered its effectiveness (Brauer et al., 2003).

The most recently developed ML genetic algorithm is MetaPIGA (Lemmon and

Milinkovitch, 2002). This sophisticated Java program implements a number of interesting

techniques. Foremost among these is the simultaneous evolution of a number of partially

independent “meta-populations” of individuals. Such approaches have been well studied

in the GA literature (see Cantu-Paz, 2001), and can be very effective in increasing search

efficiency by exploring a larger area of the search space and proving a diversity of

solutions for recombination operators to act upon. MetaPIGA takes special advantage of

meta-populations in its novel “consensus pruning” technique. The idea of consensus

pruning is that topological features (bipartitions) found by multiple independent

populations are well supported and will appear in the final optimal topology. MetaPIGA

constrains such bipartitions so that no topological mutations are considered that would

remove them from the topology. This effectively breaks the tree into much smaller

21

portions that can be searched within, drastically reducing the search space. Another novel

feature of MetaPIGA is its treatment of branch lengths. Terminal branches are fixed

throughout the search at values derived from a simple distance-based method, and

branch-length mutations may only affect internal branches. Some unfortunate

characteristics of the MetaPIGA software implementation are its fairly extreme memory

requirements and its inability to run in a noninteractive or batch mode. These factors

make investigation of its effectiveness in the analysis of large datasets difficult.

22

Chapter 2: The Serial GARLI Algorithm

2.1 INTRODUCTION

GARLI (Genetic Algorithm for Rapid Likelihood Inference) is a heuristic search

algorithm for performing phylogenetic inference under the maximum likelihood (ML)

criterion. The algorithm was developed with the goals of increasing both the speed of ML

inference and the size of the datasets that could reasonably be analyzed. This is achieved

primarily through algorithmic enhancements that allow effective ML topology searching

while performing only a small fraction of the numerical optimization required by older

software.

I begin with a general overview of the GARLI algorithm. GARLI is derived in

part from GAML (Lewis, 1998), and as such special attention will be paid to distinctions

between the two algorithms. A general outline of the algorithm appears in section 2.1,

and more detailed discussions of particular aspects follow in sections 2.2 through 2.6.

2.2 ALGORITHM OVERVIEW

Terminology

Given a set of aligned nucleotide sequences, the GARLI algorithm seeks to

evolve high quality solutions representing the evolutionary relationships between those

sequences. As is typical of genetic algorithm (GA) approaches, this is done through the

evolution of a population of solutions, each termed an individual. Each individual

encodes a topology representing a set of potential evolutionary relationships, a

corresponding set of branch-length parameters for that topology and a set of parameters

representing the model of sequence evolution. The sequence evolution model

implemented is the general time-reversible model (GTR: Lanave et al., 1984), with

23

Figure 2-1. A schematic view of the GARLI algorithm.

24

discrete gamma-distributed rate heterogeneity (Yang, 1994) and an estimated proportion

of invariable sites (Gu et al., 1995). The fitness of each individual is a function of its log-

likelihood score (lnL) on the given dataset.

The starting conditions of the algorithm consist of the initial population of

solutions, and may be user-specified or generated randomly. I will use the term GA

parameters to refer to all variables that control the details of the genetic algorithm,

including aspects of the selection process, mutation operator details and mutation

operator probabilities. The most important GA parameter is Pb, which controls the extent

of deterministic branch-length optimization that follows topological mutations. Two

important timescales exist: the generation, which consists of a single round of replication,

mutation and scoring of individuals, and the update interval, which consists of one

hundred generations. At the end of each update interval certain GA parameters are

evaluated and may be adaptively altered. Individuals of the previous generation are

referred to as the parent individuals (although not all will necessarily leave offspring),

and those of the current generation are referred to as the offspring individuals. The

offspring of the current generation become the parents of the following generation. The

stopping criterion refers to the conditions under which the search will terminate. An

entire execution of the algorithm from start to termination is termed a run. A high-level

schematic of the algorithm appears in figure 2-1.

Starting conditions

The algorithm begins by creating a population of identical individuals using either

a user-specified or random topology. Starting branch lengths and model parameters may

also be user-specified. When a starting topology is not specified, one is generated

equiprobably, and all branch-lengths are set to an arbitrary length of 0.05. If a topology is

specified without branch-lengths, the length of all branches is again set to 0.05. If model

25

parameter values are not specified, the algorithm infers reasonable estimates from the

data for the equilibrium base frequency parameters and the proportion of invariant sites,

and uses arbitrary default values for the GTR relative rate parameters and the α

parameter of the rate heterogeneity distribution. Specifically, the observed base

frequencies are used as the starting values of the equilibrium base frequencies

parameters, and the proportion of invariable sites is set to 1/4 of the observed proportion

of invariant sites. The GTR relative rate parameters are set to the equivalent of a

transition:transversion rate ratio of 4:1 (i.e., a=c=d=f=1.0 and b=e=4.0) and the α

parameter of the gamma rate heterogeneity distribution is set to 0.5.

Before beginning stochastic optimization through the GA, a phase of rough

deterministic optimization is performed on the branch lengths and the α parameter of the

starting individuals. Strong interactions exist between the shape of the rate heterogeneity

distribution and branch-length parameters. Initial experiments suggest that when these

parameters start far from their optimal values, stochastic mutations performed by the GA

have a difficult time moving them toward globally optimal values, and may sometimes

result in entrapment in local parameter optima. This initial optimization step does not

attempt to bring these parameters to their optimal values, but rather to bring them close

enough that stochastic mutations may proceed to optimize them. This step is also

important for GARLI’s branch-length optimization algorithm, which will be discussed in

section 2-5.

Note that in contrast to deterministic topological search algorithms such as

PAUP* (Swofford, 2002), RAxML (Stamatakis et al., 2005) or PHYML (Guindon and

Gascuel, 2003), the use of a particular starting condition in GARLI does not uniquely

determine the final solution. This lack of determinism stems from the algorithm’s

stochastic search strategy, and should not be viewed as a negative aspect.

26

The generation cycle

Nearly the entire runtime of the algorithm is spent in the generation cycle.

Generations are non-overlapping, such that there is full turnover of all individuals each

generation. The number of individuals in the population, N, is constant over time. Within

each generation the following steps are performed:

1. The fitness of each individual is calculated from the relative lnL scores of the

population using a fitness function. The details of the fitness function are

discussed in section 2.2.

2. The parent with the highest fitness is automatically chosen to leave k offspring,

termed the “holdover” individuals. In GA terms this is known as an elitist strategy

(Mitchell, 1996).

3. The parents of each of the remaining N-k offspring are chosen randomly, in

proportion to the parent’s fitnesses. At this point the offspring are exact copies of

their parents.

4. Each offspring besides one holdover individual is subjected to one of the mutation

operators, chosen randomly. Retaining an unmutated copy of the best individual

ensures that it is never lost due to chance (i.e., genetic drift).

5. The lnL score of each mutated offspring is calculated.

Typical runs consist of many thousands or tens of thousands of generations.

The update interval

Each update interval is a period of one hundred generations. During each update

interval information is tabulated on beneficial topological changes and the performance

of each mutation operator. At the end of each update interval this stored information is

evaluated and various GA parameters may be altered in an attempt to favor those

27

operators that have proved beneficial over recent generations. This procedure will be

discussed in detail in section 2.4.

Stopping criterion

Both the serial and parallel GAML implementations (Lewis, 1998; Brauer et al.,

2003) left open the issue of the most appropriate conditions under which to terminate a

GA run. Runs were terminated when a pre-specified number of generations or runtime

limit has been reached. Deterministic branch-swapping algorithms such as those

implemented by PAUP* and RAxML typically terminate when all allowable swaps have

been attempted without encountering a better scoring topology. In the GA context, there

is no point at which the algorithm “runs out” of allowable branch swaps. Because

successive mutations may interact synergistically (non-additively) and allow escape from

local topological optima, the fact that an attempted rearrangement was not beneficial

once does not necessarily suggest that it should be disallowed in the future.

Although the specification of an automated stopping criterion for a GA is not as

clear-cut as it is for some other search strategies, reasonable criteria do exist. Because the

primary aim of the search is an estimate of the topology, a lack of topological change in

the best scoring individual over a large number of generations is one obvious component.

However, because topology estimation is intimately tied to model and branch-length

parameter estimation, some assurance that these parameters are near their optimal values

for the current topology is also desirable. GARLI implements an automated stopping

criterion which requires three conditions to be met. First, no topological mutations may

have created a significantly higher fitness individual (lnL improvement of greater than

0.05) over a specified number of generations. Second, the total increase in score over a

number of update intervals must be less than a specified amount. Third, the GA

parameter controlling the degree of branch-length optimization (Pb, discussed in section

28

2.5) must have reached its minimum value. In addition to this automated stopping

criterion, GARLI may also be instructed to terminate after a specified number of

generations or runtime has passed. This deterministic stopping criterion supersedes the

automated stopping criterion.

Note that if the algorithm is allowed to continue running after the particular

stopping criterion has been reached, it is likely that better solutions will eventually be

found (unless the search has located the global optimum). As such, reaching the stopping

criterion should not be viewed as a guarantee that the global optimum has been reached,

but rather as a suggestion that the run has reached a point in the search space from which

improvement is difficult. Allowing the run to continue longer may eventually result in

further improvement, but at some point computational resources may be better spent on

performing additional independent runs from the same or different starting conditions.

2.3 THE FITNESS FUNCTION

The procedure used to determine an individual’s probability of being selected as a

parent from its lnL score is termed the fitness function. The choice of a particular fitness

function is an important consideration for any genetic algorithm. Many methods exist in

the GA literature, but the primary distinctions are between rank-based and fitness-

proportionate methods. In effect, the choice of fitness function determines how “greedy”

the search algorithm is. Highly biased fitness-proportionate functions strongly favor the

best individual and result in aggressive hill-climbing searches. Rank-based functions may

be thought of as more conservative, spreading the probability of reproducing across

individuals regardless of their exact scores.

The GAML algorithm applied a fully rank-based fitness function. In contrast,

GARLI uses a tunable fitness-proportionate method. This change was motivated by an

examination of the distribution of lnL changes caused by topological rearrangements.

29

Once a reasonable topology is found, the vast majority of rearrangements tend to very

drastically worsen the likelihood. At such a point, rearrangements that are able to

increase the likelihood are quite scarce, and only result in very meager score increases.

The application of a rank-based fitness function in this situation gives individuals that

have just experienced a mutation causing a large decrease in lnL a good chance of

reproducing, despite the fact that the probability of them experiencing a compensatory

beneficial mutation is quite small. GARLI chooses to strongly favor the current best

individual at the potential cost of intra-population variability.

The probability of each individual of the previous generation being selected as the

parent of each offspring individual is a simple function of the parents’ relative lnL scores

and the user-defined selection intensity, s. The procedure is as follows:

1. Given the set of lnL scores of all N individuals, F={lnL1, lnL2, … lnLN}, calculate

lnLmax = max(F)

2. Calculate the relative lnL score of each individual, ΔlnLi = lnLi - lnLmax

3. Calculate the fitness of each individual, fi=exp(sΔlnLi)

4. Finally, the probability of being selected as a parent is proportional to the

individuals’ fitnesses:

€

pi =
fi

f j
j=1

N

∑

The selection intensity parameter s controls the strength of selection, the sensitivity of the

fitnesses to the magnitude of the differences in lnL. Large and small values of s represent

strong and weak selection, respectively. Table 2-1 displays the relative probabilities of

30

reproduction for two individuals differing by a score of 1.0 lnL over a range of

reasonable values of s.

Selection intensity (s) Ratio of reproduction probabilities
0.05 0.95:1.0
0.10 0.90:1.0
0.25 0.78:1.0
0.50 0.61:1.0
0.75 0.47:1.0
1.00 0.37:1.0
2.00 0.14:1.0

Table 2-1. Relative reproduction probabilities of two individuals differing by 1.0 lnL unit
for various values of the selection intensity, s.

The GARLI fitness function is a generalization of the procedure used to calculate

Akaike weights (see Burnham and Anderson, 2002, p. 75), and is equivalent to it when s

is equal to 0.5. The Akaike weights procedure is typically used to calculate the evidence

in favor of a number of competing models based on their relative lnL scores and the

number of parameters estimated by each. The procedure may used in model averaging

approaches to obtain an estimate of a parameter across models by weighting the

parameter estimates under each model by its Akaike weight. Note that technically the

Akaike weights procedure requires that the likelihoods for each model be compared with

all free parameters at their maximum-likelihood estimates. As it is used here, the

contributions of the current values of the model and branch-length parameters to an

individual’s likelihood are also incorporated in the calculation of its fitness. To my

knowledge the use of an Akaike weights type procedure in determining the probabilities

of reproduction in a GA is novel, but seems reasonable and flexible.

31

2.4 MUTATION OPERATORS

The mutation operators implemented in GARLI are of four general types:

topological mutation, evolutionary model parameter mutation, branch-length parameter

mutation and topological recombination. The mutation operators are mutually exclusive,

such that each mutated individual experiences only one per generation. Each operator

will be described in turn, with the exception of topological recombinations. Due to the

very limited amount of variation maintained in a single GA population with small

population sizes (Brauer et al., 2003), recombination is expected to be of little benefit,

and is not utilized in the serial GARLI algorithm. However, in the parallelized multiple-

population implementation, topological recombination is utilized and will be discussed in

detail in chapter 4.

Topological mutations

Choosing an effective distribution of topological mutations for use in a

phylogenetic GA is an important issue. It is intuitive that all possible topological

rearrangements are not equally likely to cause increases in lnL score. Once a reasonable

topology has been obtained, small adjustments are more likely to result in new topologies

with high fitness than are very radical adjustments. This argument is akin to Fisher's

Geometric Model of Adaptation (1930), which predicts that as a population nears a

fitness peak, mutations of smaller effect are necessary to allow further progress toward

the peak. Although mutations of small effect are important in this context, they are also

inherently less likely to allow the discovery of other disjoint fitness peaks. For these

reasons, a stochastic search strategy must seek a balance between rearrangements that

fine-tune a topology and those that allow a more extensive exploration of treespace.

To further explore the issue of an optimal distribution of topological mutation

effects, we must first choose some measure of the effect size of a topological mutation.

32

One such measure is the Robinson-Foulds distance (RF: Robinson and Foulds, 1981)

between the original topology and the topology resulting from the rearrangement. In this

context the RF distance is equal to twice the number of bipartitions present in the original

tree that are no longer present in the topology after the rearrangement.

For simplicity, the following discussion will consider only the class of SPR

rearrangements, implicitly including NNI rearrangements that are a special case. For SPR

rearrangements there is a simple relationship between the details of the rearrangement

and the RF distance induced by it. Define the reconnection distance of a rearrangement

as the number of nodes that must be crossed on the path between the point at which a

subtree was pruned for an SPR rearrangement and the branch to which it is reattached

(see Figure 2-2). The induced RF distance is equal to twice the reconnection distance.

NNI rearrangements are simply those with a reconnection distance of one. The minimum

and maximum RF distances between two topologies for a dataset with T taxa are two and

2(T-3). However, except in the case of topologies that have very peculiar shapes (i.e., are

completely pectinate), the maximum distance that may be induced by an SPR

rearrangement is significantly less than this maximum.

If we accept the RF distance as a reasonable measure of the effect size of

topological rearrangements, examining the distribution of RF distances across all possible

SPR rearrangements for a particular topology may be instructive. The exact distribution

of reconnection distances will vary depending on the number of taxa and the tree shape,

but some generalizations may be made. Consider the topology of Figure 2-3a, the ML

tree for 64 frog taxa published by Hillis and Wilcox (1995). The distribution of

reconnection distances for all possible SPR swaps on this topology appear in Figure 2-3b.

The reconnection distances of the 14,792 possible SPR rearrangements range from one to

seventeen, with a mean of approximately 7.4. This suggests that although the spectrum of

33

Figure 2-2. The reconnection distance. After pruning at the branch ancestral to the two
black clades, each potential reattachment branch is assigned a reconnection
distance. The distance to each branch is equal to the number of nodes that
must be crossed on the path between that branch and the branch to which the
subtree was originally connected.

SPR mutations includes some of small effect, a rearrangement chosen at random is likely

to be relatively radical. Further, as the number of taxa in the topology increases, the

proportion of swaps with small reconnection distances will decrease yet more. For this

fairly small topology the proportion of swaps of smallest effect (NNI rearrangements) is

less than one percent, and this proportion will become vanishingly small as total taxon

numbers grow into the hundreds and thousands. This fact is not problematic when

rearrangements are chosen deterministically and exhaustively, because all allowed

rearrangements are attempted in turn. However, in the context of a stochastic search

strategy steps must be taken to ensure that sufficient mutations of small effect are

included in the mutational spectrum regardless of the number of taxa in the analysis.

34

Figure 2-3. Reconnection distances on a real topology. (a.) The ML topology for the 64
taxon dataset of Hillis and Wilcox (2005). (b.) The distribution of SPR
reconnection distances on the topology of (a).

35

GARLI allows flexible control of the distribution of topological rearrangements

by implementing three distinct rearrangement operators. The first is the standard NNI

rearrangement, which provides minor topological changes. The second is a localized

form of SPR, referred to here as limSPR. This operator only allows reattachment of the

pruned subtree to branches with reconnection distances of less than a specified value. All

branches with distances less than the specified value have equal probability of being

chosen as the reconnection point, after branches with a reconnection distance of one have

been removed from consideration (rearrangements equivalent to NNIs). Similar

localization of rearrangements is also available in other software such as PAUP* and

RAxML. The third operator performs a standard SPR rearrangement in which the

reattachment branch is chosen equiprobably from all branches of the tree.

The probability of applying each of the three operators during a run may be

specified individually, allowing simple control of the proportion of rearrangements that

cause minor topological changes (NNIs), moderate topological changes (limSPRs) and

more radical topological changes (SPRs). In addition, the proportions of the three

operators may be adaptively altered over the course of a run, allowing the most beneficial

operator to be favored at any point in time. The adaptation procedure will be discussed

later in this section.

Model parameter mutations

When a model parameter mutation occurs, the parameter to be altered is chosen

with equal probability from the 13 parameters described below. Mutation operators

affecting the evolutionary model parameters simply multiply the current parameter value

by a number drawn from a gamma distribution with mean 1.0 and a specified shape

parameter. The model parameters of the GTR+I+Γ model consist of six relative rates,

four equilibrium base frequencies, the proportion of invariable sites and the α shape

36

parameter of the gamma distribution of rate heterogeneity. Some parameters have

restrictions such as the need to sum to one (the equilibrium base frequencies) or to

maintain indentifiability (the f rate of the GTR model is fixed at 1.0). When the value of

one of these parameters is altered, rescaling occurs such that the appropriate restrictions

are maintained.

In addition to operators affecting the aforementioned 12 parameters, one other

important parameter operator is implemented. This operator effectively mutates the mean

rate of substitution (µ), and in some senses might also be considered a branch-length

operator. Because µ is subsumed into the definition of the branch lengths (i.e., branch

length = µ x length of time represented by the branch), it is not directly identifiable in

ML phylogenetic inference. However, it may be effectively mutated simply by

multiplying all branch lengths of a topology by a single gamma-distributed variable.

Allowing this operator in a stochastic search is important because of strong correlations

between optimal branch lengths and optimal values of rate-heterogeneity parameters.

Mutations to the α parameter or the proportion of invariable sites cause the optimal

lengths of all branches to increase or decrease by nearly the same proportion. In the

absence of a µ parameter operator, many successive random branch length mutations

would be necessary to bring the branch lengths back into line because of the lack of

deterministic parameter optimization. A similar operator is implemented as a proposal

type in MrBayes (Huelsenbeck and Ronquist, 2001) for similar reasons.

Branch-length parameter mutations

As with model parameter mutations, branch-length mutations involve multiplying

a branch length by a gamma-distributed variable with mean 1.0 and a specified shape.

Branch-length mutations differ from model parameter mutations in that multiple branch

lengths may be altered simultaneously. When a branch-length mutation occurs, the

37

number of branches affected is drawn from a binomial distribution with specified mean

M. This number of branches is then randomly selected from the topology and each is

altered with an independently drawn multiplier. Note that drawing the number of

branches to be altered from a binomial distribution with mean M is equivalent to

specifying a per-branch mutation probability of M/(T-3). I find the binomial mean more

intuitive because the expected number of branches to be mutated does not depend on the

number of taxa in the analysis.

Computational costs of mutation operators

Nearly all of GARLI’s computational effort is spent in calculating the lnL scores

of altered individuals, as is typical of ML search algorithms. Assuming that sufficient

memory is available to store previous computations, the amount of computation

necessary to score a mutated individual is proportional to the number of internal nodes at

which the previous computations have changed and must be recalculated. The mutation

operators differ in the number of nodes that they require to be recalculated, and therefore

also differ strongly in the amount of computation necessary to score the mutated

individuals. Operators altering any of the model parameters are particularly costly

computationally. A change in any model parameter alters the matrix of instantaneous

rates of nucleotide substitution, requiring the recalculation of all computations for the

entire topology. In contrast, topological and branch-length mutations tend to require far

fewer recalculations because many of the previous computations remain valid and may be

reused. It is important to note that the amount of recalculation necessary following model

parameter mutations grows more quickly with increasing taxon numbers than does the

recalculation necessary for the other mutation types. This suggests that as the number of

taxa increases, the computational cost of optimizing the model parameters stochastically

through the GA may at some point outweigh the benefit. The implications of fixing

38

model parameters at reasonable estimates and not allowing stochastic optimization will

be investigated in chapter 3.

Adaptive tuning of mutation operator probabilities

GAML required that the probabilities of the mutation operators be fixed at the

outset of a run. However, it is likely that the most advantageous mutation types will vary

dataset to dataset, as well as during the course of a run on a single dataset. For this

reason, GARLI implements a mechanism that allows the relative probabilities of some of

the operators to be adaptively biased toward those that have been the most beneficial over

recent generations.

Each operator has what I will term an operator weight calculated for it, with the

probability of applying each operator proportional to these weights. The operator weights

are dependent on two terms: the user-specified prior weights and the calculated

performance weights. The prior weights determine the expected proportions of the

operators and the performance weights summarize the benefit of each operator over

recent generations. The operator weights are recalculated at the end of each update

interval. The same procedure is used to determine the proportions of the three primary

operator types (topological, model parameter and branch length), as well as the

proportion of the specific operators within the class of topological mutations (NNI, SPR

and limSPR).

The prior weights (wi, i∈{t, m, b} for topology, model parameter and branch-

length mutations, respectively) are set before the start of a run. The performance weights

for each operator type are calculated by summing any increases in the population best

score that are due to that type over a number of update intervals (si), and dividing by the

total number of times that operator was applied (ni). Note that this is not equivalent to the

average change in score due to each mutation type because mutations that worsen the

39

score are not included in the sum. This distinction is important, because the intent is to

capture a measure of the inherent potential for lnL improvement of each mutation type,

rather than its average effect on fitness.

More formally, the probability of performing each mutation type is updated at

each update interval such that

∑ +

+
=∈ bmt

j
jn

s

in
s

w

w
bmtiiP

j

j

i

i

,,

)(
),,,(

Thus, the ratios of the prior weights control the expected probabilities of the mutation

operators, and their magnitudes control the sensitivity of the probabilities to the observed

performance of each operator. Large values of the prior weights cause the observed

performance of the operators to be unimportant, making the operator probabilities

essentially constant. Very small values of the weights may cause the probabilities to vary

significantly over the course of a run. A minimum probability of 0.02 is enforced for each

of the mutation types, regardless of the values of the weights.

Allowing adaptive changes in the operator probabilities is beneficial in part

because of the different computational costs of the mutation operators. Model-parameter

mutations are much more computationally costly that the other mutation types and it is

intuitive that they should only be performed when a significant benefit is expected. The

fact that optimal model parameter values often do not vary significantly across reasonable

topologies further suggests that the prior weight on model mutations may be set quite

low, so that their high computational cost only becomes apparent when the parameter

values are far from optimal.

40

An alternative approach to adaptively change mutation probabilities is common in

the GA literature. This approach consists of encoding the mutation operator probabilities

as part of the individual, and allowing mutations of the mutation probabilities themselves

(e.g., Foster, 2001). This should theoretically allow the optimal mutation probabilities

(i.e., those that allow the greatest increases in fitness) to evolve naturally in the

population. I have investigated this approach, and have not found it to work well in the

context of a phylogenetic GA. In practice, allowing the mutation probabilities to be

selected as part of the individual resulted in evolution toward a very high probability of

branch-length mutations. I believe that this is because the mean lnL change caused by

topological and model mutations is very strongly negative, while the mean change caused

by branch-length mutations is only slightly negative. Thus, by evolving toward higher

frequencies of branch-length mutations, the average lnL score of the population

increases, but at the expense of the generally more important mutation types.

2.5 BRANCH-LENGTH OPTIMIZATION

Motivation

ML phylogenetic searches must involve the joint optimization of tree topology,

branch lengths, and evolutionary model parameters, despite the fact that researchers are

often primarily interested in the topology. Whether or not the values of the continuous

parameters are of interest in and of themselves, they are crucial in evaluating the merits

of alternative topologies. The facts that optimal model parameter values may vary across

topologies and that branches appear and disappear as topologies change are among the

most difficult issues in the implementation ML phylogenetic searches.

Accurate model parameter estimates are known to be very important for accurate

ML phylogeny estimation (Sullivan and Swofford, 1997). Fortunately, it is often

41

observed that optimal model parameter values do not vary significantly between

reasonable topologies, and conversely that topologies are ranked nearly identically when

scored using the same set of reasonable model parameters. These facts contribute to the

effectiveness of the “successive approximation” approach to ML phylogeny estimation

(see Sullivan et al., 2005), in which model parameter values are estimated on an initial

topology, fixed during the course of a topology search, re-estimated on the resulting

topology, and fixed for another round of searching. Although the optimization of model

parameters on each topology encountered during a search may be reasonably avoided, the

optimization of at least some branch-length parameters on newly created topologies

cannot be.

To obtain a sense of the importance of branch-length values in the comparison of

topologies, consider the relationship between a topology’s total lnL score and the length

of individual branches within that topology (see Figure 2-4). If even a single branch

length is far from its optimal value, the lnL score of the entire topology may be reduced

by tens of lnL units. This is clearly an important issue, because it is often necessary to

distinguish between topologies whose optimal lnL scores differ by less than one lnL unit

during a topology search. Because GARLI stochastically optimizes branch-length

parameters through mutation and selection, a topology’s branch lengths will become

more optimal the longer that topology exists in the population. It is therefore

unreasonable to expect a newly created topology to compare favorably to an existing one

unless the new topology’s branch lengths are also made reasonably optimal. The GAML

algorithm performed no branch-length optimization following topological

rearrangements, simply leaving existing branches at their previous lengths and assigning

newly created branches an arbitrary length. This inability to assign reasonable branch

42

lengths following a rearrangement was perhaps GAML’s greatest shortcoming, as noted

by Brauer et al. (2003).

Figure 2-4. The relationship between the length of three arbitrarily chosen branches and
the total tree log-likelihood of the ML topology for the 64-taxon dataset of
Hillis and Wilcox (1995).

In non-stochastic ML searches, topologies are typically compared to one another

on the basis of their maximized likelihood (L̂ln), the highest log-likelihood attainable for

each topology across all possible values of the branch-length parameters. Model

parameters may also be optimized in the calculation of L̂ln , or it may be calculated

conditional on a fixed set of model parameters. The computation of L̂ln values provides

an unambiguous means of comparing the merits of topologies, but comes at a huge

43

computational cost. Because there is not an analytical solution for the branch-length

values that maximize the likelihood, these values must be obtained by one of several

computationally intensive numerical optimization techniques such as the Newton-

Raphson method or Brent’s method (see Press et al., 1992, for details of numerical

optimization techniques). All of these techniques guarantee convergence on a parameter

optimum, but often require many iterations and only approach the optimum

asymptotically.

If we consider the minimum requirements for the implementation of an ML hill-

climbing search, it is evident that obtaining L̂ln values for every topology is not strictly

necessary. Only the ability to rank topologies on the basis of L̂ln values is required. In

other words, the algorithm must simply determine whether a newly created topology is

more or less optimal than the current topology. Thus, a scoring procedure that performs

less optimization but provides reasonable estimates of the L̂ln score of topologies should

be sufficient. More formally, we seek an alternative scoring procedure that returns

estimated likelihood scores (L
~

ln) having the following property for all topologies i and

j:

ji LL
~

ln
~

ln > iff ji LL ˆlnˆln > ∀ i, j

By definition, the relationship between iL
~

ln and iL̂ln is

iii optLL Δ+=
~

lnˆln

where ioptΔ represents the increase in score attainable by performing full branch-length

optimization on topology i. This value may be thought of as a measure of the optimality

44

of the entire set of branch lengths of the topology. We desire an accurate estimate of

ijL̂lnΔ , the difference in maximized log-likelihood between topologies i and j:

jiij LLL ˆlnˆlnˆln −=Δ

substituting and rearranging we obtain:

)
~

(ln)
~

(lnˆln jjiiij optLoptLL Δ+−Δ+=Δ

)()
~

ln
~

(lnˆln jijiij optoptLLL Δ−Δ+−=Δ

Thus, the error inherent in estimating ijL̂lnΔ using the alternative scoring procedure, E,

is equal to the term)(ji optopt Δ−Δ . E will clearly will be minimized when

ji optopt Δ=Δ . This suggests that accurate scores may be obtained by devising an

optimization algorithm that assures that the set of branch lengths on each topology scored

is equally optimal (i.e., optΔ is constant across topologies).

The degree of optimality of a set of branch lengths on a topology i must be related

to the degree of optimality of each individual branch length b within that topology,

suggesting the following:

∑
∈

=

Δ∝Δ
Bb

b

b
ii optopt

1

However, assuming such a simple relationship is a gross simplification because it

requires that the values of b
ioptΔ for each individual branch are independent of one

another, which is not the case. When one branch is optimized, the potential for score

improvement due to optimization of every other branch will change, and may either

45

increase or decrease. Nonetheless, the notion of a per-branch optimality measure is useful

in devising an optimization algorithm that results in consistent values of optΔ across

topologies. In particular, such a relationship suggests that an equal degree of optimality

of the entire set of branch lengths on each topology scored may be attained by making all

branch lengths within each topology equally optimal.

Several other observations are also important in understanding GARLI’s

optimization methodology. First, we may expect that the magnitude of E will be

proportional to the amount of numerical optimization of branch lengths that is applied to

the topologies. As the number of optimization passes applied in the calculation of L
~

ln

approaches the number required to obtain L̂ln , E must by definition approach zero.

Second, note that the magnitude of E that may be tolerated in scoring two topologies

while still accurately ranking them is proportional to the difference in maximized

likelihood between the topologies. In other words, when one topology is much more

optimal than another, highly accurate estimates of scores are not needed to recognize that

fact. Finally, if a new topology is generated from an existing one by a topological

rearrangement, the two topologies will share a large amount of their branching structure.

This suggests that if branch lengths were relatively optimal in the parent individual, most

will remain relatively optimal in the new topology and will not require optimization.

Optimization algorithm

I will first describe how a single branch length is optimized, and then detail the

functioning of GARLI’s optimization algorithm a whole. Individual branch lengths are

optimized by the second order Newton-Raphson (NR) method. This method requires

analytical calculation of the first and second derivatives of the likelihood function with

respect to the branch length of interest (d1 and d2, respectively). Given a branch’s current

length, t, the NR estimate of the optimal value, t’, is

46

€

t'= t − d1
d 2

Multiple iterations of the NR procedure (with t’ becoming t for the next round) may be

needed to reach a point very near the fully optimal branch length, especially if the branch

length was initially far from its optimal value. After the derivatives have been calculated

for a given branch b in topology i, an estimate of b
ioptΔ , denoted b

itpo
~Δ , may be

calculated via a Taylor series:

22
12

2
1

2
2

2
12

!2
2 2

)()(1)'()'(1~
d
d

d
dd

d
ddb

i dttttdtpo −=−+−=−+−=Δ

This estimate is of critical importance to the optimization algorithm. Because the aim is

to make all branch lengths of the topology equally optimal, the value b
itpo

~Δ allows the

algorithm determine when the optimization of each branch may be terminated.

Specifically, optimization passes are performed on each branch until b
itpo

~Δ is less than a

threshold value, defined by the GA parameter Pb. Note that b
itpo

~Δ is calculated before

any change to the branch length has taken place, and thus represents an estimate of the

score increase that would be obtained by changing the branch length from its current

length t to the NR estimate t’. This means that if the value of b
itpo

~Δ calculated on the

first optimization pass on a particular branch is less than Pb, no change is made to the

branch length because it is already sufficiently optimal.

During the normal course of a run, GARLI only applies branch-length

optimization to parts of a topology directly affected by a topological rearrangement. It

thus depends on the fact that the branch lengths of all parent individuals are already

within the proper threshold of their optimal lengths. This is ensured at the beginning of a

47

run by performing repeated optimization passes over all branches of the starting topology

until b
itpo

~Δ for every branch is less than Pb. After each rearrangement is performed

during a run, the algorithm attempts to return the optimality of all branch lengths to

within the threshold value.

The progression of GARLI’s optimization algorithm following a topological

rearrangement is divided into three phases. First, the localized phase performs

optimization on the branches directly affected by the rearrangement. Second, the

propagation phase “sweeps” optimization over successive branches outward from the

branches optimized during the localized phase. Third, the localized branches and any

branches whose lengths were altered during the propagation phase are revisited for final

optimization passes during the refinement phase.

The following discussion traces the progression of the branch-length optimization

algorithm over a topology following the sample SPR rearrangement depicted in Figure 2-

5. This rearrangement prunes branch b1 from its initial location and reattaches it along

branch b2. This divides b2 into two new branches, b2a and b2b, and effectively fuses two

branches into one at the previous attachment point of b1. This topological change may

have an impact on optimal branch-length values in the vicinity of b1’s new attachment

point as well as it in the vicinity of its previous location. In each of these regions the

optimization algorithm centers on a single node. These are termed the attach node at b1’s

new location and the prune node at b1’s former location (see figure 2-5). The attach node

is the node joining branches b1, b2a and b2b. The prune node is the node ancestral to

b1’s former location. The opposite end of each branch connected to these two nodes is

termed its distal end. Note that the optimization algorithm progresses in the same fashion

following any of the three types of topological mutation operators, except that no prune

node is involved in the case of NNI or limSPR rearrangements. Thus, any mention of the

48

prune node in the following discussion is only relevant in the case of standard SPR

rearrangements.

Figure 2-5. Progression of the GARLI branch-length optimization algorithm over a
topology following an SPR rearrangement. This rearrangement prunes
branch b1 and reattaches it along branch b2, creating branches b2a and b2b.
Optimization is first applied to branches b1, b2b and b2a. Optimization then
propagates upward from branches b1 and b2b, and downward from branch
b2a, as indicated by the arrows. If the value of b

itpo
~Δ calculated for a

particular branch is less than Pb, optimization does not continue to propagate
to further branches.

The localized optimization phase begins at the attach node. The branch length of

b1 is initially set to an arbitrary length of 0.05 because its previous length does not have

meaning in its new topological context. The previous length of b2 is divided equally

between b2a and b2b. NR branch-length optimization is performed first on b1, followed

by b2a and b2b. The three branches surrounding the prune node are then optimized in a

similar fashion. The optimization algorithm then enters the propagation phase at the

attach node. The two branches connected to the distal end of b1 are optimized first. If a

branch requires optimization (i.e., b
itpo

~Δ is greater than Pb), its value is updated and the

49

optimization algorithm propagates to the two branches connected to the distal node of

that branch. This procedure continues to propagate recursively to branches in a directed

fashion away from the attach node. Propagation along a series of branches stops when
b
itpo

~Δ is less than Pb or a terminal node is reached. When all optimization has propagated

to its full extent on the branches distal to b1, optimization propagates in the same manner

in a directed fashion from the distal end of b2a and then b2b. If the lengths of any of the

branches surrounding the prune node required optimization during the localized phase,

the same propagation procedure is applied around the prune node.

It is important to note that throughout the optimization routine the optimal length

of each branch is conditional on the current values of all other branch lengths. This means

that even if a branch length is brought to its optimum value after a rearrangement,

subsequent optimization of other branch lengths may cause that optimum to shift.

Fortunately, the degree to which the lengths of branches affect one another is closely

related to the proximity of the branches in the topology. If a particular branch length

requires significant adjustment following a rearrangement, it is likely that other branches

adjacent to it may as well. This fact is exploited by GARLI to identify branches that may

need optimization during the propagation phase.

Finally, the optimization algorithm enters the refinement phase. This phase is

necessary because any optimization performed during the first two phases was

conditional on the lengths of all branches at that time, and subsequent optimization may

have shifted the optima of some branches. The branches directly connected to the attach

and prune nodes are placed into the optimization queue. Any branches whose lengths

were altered during the propagation phase are also added to this queue. The refinement

phase consists of cycling through the branches in the queue in the order in which they

were added. For each branch, b
itpo

~Δ is calculated and its length is optimized if necessary.

50

When the length of a branch requires optimization it is moved to the back of the queue;

otherwise it is removed. This procedure continues until there are no branches remaining

in the queue, and full optimization is complete.

When a search is far from a topological optimum, many potential rearrangements

may allow large gains in fitness. During this period intensive branch-length optimization

is not necessary because the beneficial rearrangements are recognizable even without

accurate score estimates. As the run progresses these “easy” rearrangements become

rarer, and the beneficial rearrangements remaining offer a much smaller increases in

score. To recognize these rearrangements of smaller benefit, more accurate estimation of

likelihood scores is necessary, implying that a greater effort should be put into branch-

length optimization. Toward this end, the algorithm reduces Pb as the run progresses. The

initial value of Pb is specified by the user, as is its minimum value. Additionally, the user

specifies the number of times that Pb should be decreased (by default, 40). When no

topological mutation has created a more optimal individual over a specified number of

update intervals, the current Pb value is reduced geometrically. Thus, Pb remains constant

while beneficial topological changes are occurring and is reduced when none are found at

the current degree of optimization. Beneficial topological mutations often begin to be

found again following a reduction in Pb. Immediately after each reduction of Pb,

deterministic optimization passes are made over the topologies to ensure that all branch

lengths are within the new optimality threshold. Reduction of Pb continues throughout the

run whenever there is a lack of beneficial topological mutations. Eventually it reaches its

specified minimum value, which is one of the criteria required by the automatic

termination criterion.

51

2.6 MEMORY REQUIREMENTS

As is sometimes the case in computational problems, the GARLI algorithm is

confronted with a tradeoff between memory requirements and computational efficiency.

Typically the programmer decides how to balance these two factors, and this choice is

not flexible at runtime. Unfortunately, if memory usage is minimized the software will be

usable on more systems, but will not be optimally efficient where large amounts of

memory are available. Conversely, if the choice is made to maximize computational

efficiency, typical computer systems will be unable to analyze the largest datasets.

To my knowledge, GARLI is unique among phylogenetic search software in that

its memory requirements are flexible. The user specifies the maximum amount of system

memory that should be devoted to the storage of likelihood computations. As long as this

meets a modest minimum requirement, GARLI works within this limit. If sufficient

memory is available, the likelihood computations for all individuals in the population

may be stored. This allows maximal reuse of previously computed values. When smaller

amounts of memory are provided, GARLI stores as many computations as possible. This

process is biased so that the most fit individual has its computations retained whenever

possible. Because the most fit individual is both automatically copied into the next

generation and the most likely to leave offspring, this biased retention assures that the

computations most likely to be reused are retained, even when relatively little memory is

available. Note that the minimum and optimal amounts of memory are dependent on both

the number of taxa in the dataset and the number of unique character patterns.

52

Chapter 3: Performance of the Serial GARLI Algorithm

3.1 INTRODUCTION

Measuring heuristic performance

The goal of a maximum likelihood (ML) phylogenetic search is to find the

topology that maximizes the log-likelihood score (lnL). This makes the comparison of

those scores the most obvious criterion for measuring algorithm performance. However,

the optimality of the final solution must be weighed against the time required to obtain it.

It might be expected that there will be a tradeoff between search time and the quality of

the solution obtained. When presented with the choice between algorithms that are slow

and result in optimal solutions or fast and result in less optimal solutions, the choice is

ultimately up to the researcher. Each of the algorithms could be considered preferable,

depending on the goals of the study and the differences in search time and the optimality

of solutions.

Repeatability of results is an important practical consideration in choosing a

search algorithm. Because of the stochastic nature of the GARLI algorithm, there can be

significant variation between runs, even when they are performed using the same settings

and starting conditions. This variation appears both in the form of differences in the

sequence of mutations occurring over the course of the run, and in the quality of the final

solutions found. Ideally, the algorithm would always reach the same global optimum

when given a set of appropriate settings, but in practice this may not be the case. Similar

variability may be encountered in deterministic branch-swapping approaches when

different starting topologies (often generated by different orders of random stepwise

addition) are used. Thus, a lack of exact repeatability should not be viewed as a

53

drawback of a method per se. Stochastic methods that do not always return the same

solution must be judged against other algorithms by observing the range of the variability

of the solutions, and gauging the probability of each algorithm returning a better solution.

The concept of solution accuracy is closely related to solution optimality, but is

not equivalent. By choosing the ML optimality criterion and a particular model of

evolution, we are in effect trusting that there will be a strong correlation between solution

optimality and solution accuracy. Solution optimality must necessarily be accepted as a

proxy for solution accuracy, because accuracy itself cannot be measured when the “true”

solution is not known. Numerous simulation-based studies have shown that the

correlation between optimality and accuracy is greater for ML than for other optimality

criteria (e.g., Huelsenbeck and Hillis, 1993; Huelsenbeck, 1995), at least when the chosen

evolutionary model is reasonably close to the true process of evolution. Analyses of

simulated data can be important in investigating the performance of search algorithms

because both optimality and accuracy may be measured when there is a known “true”

solution.

There are three primary aims of this chapter. The first is to explore how the use of

different starting conditions affect runtimes, repeatability and the optimality of solutions

obtained by GARLI in the practical analysis of real biological datasets. The second is to

compare the performance of the program to other software that has been established as

the currently best available for the analysis of large datasets under the maximum-

likelihood criterion. The third is to examine how the accuracy and runtimes of GARLI

and other software scale with increasing numbers of sequences in the analysis of

simulated datasets.

54

3.2 METHODS

Computational setup

Except for where noted otherwise, all analyses were performed on Lonestar, a

Rocks version 4.0 Linux cluster (www.rocksclusters.org) maintained by the Texas

Advanced Computing Center (www.tacc.utexas.edu). Lonestar comprises 512 dual

processor compute nodes, with a mixture of 3.06 GHz and 3.2 GHz Intel Xeon

processors. To assure consistency of results, only 3.06 GHz processors were used for

experiments, and only one processor was used per node (the other processor remained

idle). Each node contains 2 GB of system memory. Other incidental analyses (searches

to starting topologies and to optimize final results) were performed on Phylocluster2, a

small Rocks version 3.2 cluster with five dual processor compute nodes. Apart from the

fact that Phylocluster2 contains 2.8 GHz Xeon processors, the two clusters used are

essentially identical.

The source code of GARLI and RAxML (Stamatakis, 2005) were compiled with

the Intel icc compiler, version 8.0. The compiler flags specified were “–O2 –ip –fno-

alias”, which proved to result in the fastest code execution. The Phyml software

(Guindon and Gascuel, 2003) is distributed as a binary executable, so it was not able to

be compiled equivalently to the other programs.

Biological datasets

Five real datasets of varying sizes were analyzed to examine the performance of

the GARLI algorithm and to compare it to similar algorithms such as PHYML and

RAxML. These datasets were:

• Rana: A 64 taxon x 1976 column dataset of mitochondrial rRNA from North

American frogs (Hillis and Wilcox, 2005).

55

• Angio: A 228 taxon x 4811 column dataset that combines nuclear ssu rRNA

genes and the chloroplastic rbcL and atpB genes from Angiosperm plants. Data

obtained from Soltis et. al (1999) and edited to represent the same set of taxa used

by Hillis (1996). Previously analyzed by Brauer et al (2003).

• Rbcl: A 500 taxon x 1398 column dataset of rbcL gene sequences from Chase et

al. (1993). This dataset, also known as “Treezilla” has been used extensively in

testing the performance of heuristic search algorithms.

• 1000ARB: A 1000 taxon x 5547 column dataset of nuclear small subunit rRNA

sequences, extracted from the ARB database (Ludwig et. al, 2004). This dataset

was extracted and used by Stamatakis et al. (2005) as a benchmark dataset for

RAxML, although how particular sequences were selected and the exact

taxonomic distribution are unclear.

• Gutell3845: A 3845 taxon x 1866 column dataset of nuclear small subunit rRNA

sequences sampled across the Eukaryota, structurally aligned by the Gutell lab at

the University of Texas (www.rna.icmb.utexas.edu). These sequences were

selected from a larger dataset of 5844 eukaryotic sequences by removing identical

sequences and ones that did not have an associated NCBI taxonomic hierarchy

string (see http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html).

The most appropriate evolutionary model was selected for each dataset by

applying a hierarchical likelihood-ratio test (Goldman, 1993). The model chosen was

GTR+I+G in all cases except the Gutell3845 dataset, which favored GTR+G.

GARLI settings

GARLI version 0.942 was used for all analyses presented here. As discussed in

chapter 2, GARLI allows a large number of variables controlling the details of the GA to

56

be specified by the user. The experiments presented here will not attempt to examine the

implications of varying the majority of these settings, but rather will focus on a set of

defaults that have been determined through the development and testing of the program.

A listing of some of the more important settings follows, and a complete list of all

settings used appears in the supplemental information at the end of this chapter. These

settings were used on all serial runs. Population sizes were four, with one holdover

individual. The selection intensity (s) was 0.5. The starting and minimum values of the

branch-length optimization parameter (Pb) were 0.5 and 0.01, respectively. Pb

transitioned from its starting to minimum values in forty steps. The prior weights of

topological, model and branch-length mutations were 1.0, 0.05 and 0.2, respectively,

resulting in expected proportions of 80%, 4% and 16% for these three classes of

mutations. Weights of 0.2, 0.5 and 0.3 were assigned to NNI, limSPR and SPR

topological mutations, respectively. The maximum reconnection distance for limSPR

mutations was five. The stopping criterion was set such that runs would terminate when

no topological mutations increasing the lnL by more than 0.05 lnL units had occurred

over the last 20,000 generations and the total increase in lnL over the last 500 generations

was less than 0.05. Initial deterministic optimization of the branch lengths and the α

parameter were performed at the outset of all runs. A maximum of 1.6 gigabytes of

memory were allowed for storage of the conditional likelihood arrays for all datasets.

Experimental design

Effect of starting conditions

Determining how the starting conditions provided to GARLI affect the final

solutions returned is of obvious practical interest. As with most phylogenetic search

software, the algorithm may be given a starting point in tree-space in the form of a tree

57

topology estimated by a fast distance or parsimony-based inference method. In addition,

starting model parameters may be estimated via ML using a program such as PAUP*

(Swofford, 2002) and provided to the algorithm. When such initial estimates are not

provided, GARLI starts its search from a random starting topology and a set of

reasonable default model parameters. Providing the program with a reasonable starting

topology gives the algorithm a large head start in terms of its initial lnL scores relative to

starting with a random starting topology, but this does not necessarily mean that the run

will have shorter runtimes or more optimal final results.

One of the reasons for choosing ML as an optimality criterion is its ability to

avoid certain biases apparent in other phylogenetic inference methods. The most

commonly cited of such biases is the well studied “long-branch attraction” bias of

parsimony methods (Felsenstein, 1978). When a starting topology is obtained from

another inference method, the possibility exists that methodological biases are introduced

into the GA. When local topological optima under the ML criterion are not common, any

methodological biases introduced by a starting tree are likely to be eliminated by simple

hill-climbing optimization in the GA. However, if the starting tree lies at or near a local

topological optimum under the ML criterion, it may be difficult to overcome these

influences. Starting the algorithm from a random topology provides a sure way of

avoiding any biases inherent in other inference methods, but requires the search to move

a longer distance through tree-space.

Because of the relatively high computational cost of optimizing model parameters

through the GA and the typical lack of variation in the optimal parameter values across

reasonable topologies, providing GARLI with fixed model parameter estimates is an

attractive option. However, the computational cost of initially obtaining the model

estimate must also be considered, and is not trivial for large datasets. Additionally, there

58

are two potentially detrimental effects of fixing model parameters during a search. The

first could arise if the model parameters initially estimated are far enough from the

globally optimal values that they will favor a different topology. This could mean that

the best scoring topology under the fixed parameter values is found, but that it is not

identical to the globally optimal topology that is the goal of the search. The second effect

of fixing model parameters might arise if changes in model parameters assist the GA in

moving more easily through tree-space. If subtle changes in parameter values are able to

change the relative lnL ranking of topologies, model mutations might change the

likelihood surface enough to allow the search to escape from a local topological

optimum. Fixing model parameters could then hinder the search by eliminating this

beneficial effect. The experiments performed here will investigate the importance of

these concerns.

To investigate the effects of the starting topology on the performance of the

GARLI algorithm in the analysis of real data, six topologies were chosen per dataset

using the methodology detailed below. The topologies were selected from a large

population of topologies obtained by parsimony searches performed in PAUP* using a

variety of branch-swapping settings. In addition to allowing a range of starting trees for

GARLI, the procedure used also allows the investigation of several other interesting

issues. The correlation between the parsimony and likelihood scores of topologies on

large datasets will be observable, as well as the effect of intensive branch swapping under

the parsimony criterion on parsimony and likelihood scores. For the Angio dataset,

Brauer et al. (2002) found that intensive parsimony searches resulted in topologies with

higher lnL scores than did GAML runs started from random trees. Here it will be possible

to compare the degree to which parsimony searches are able to compete with GARLI in

obtaining trees that score well under the ML criterion.

59

The following procedure was used to select the six parsimony starting topologies

for each dataset:

1. Searches were performed in PAUP* under the unweighted parsimony criterion,

starting from stepwise-addition trees with random addition sequences. One

hundred searches were performed for each of four levels of branch swapping: no

swapping (stepwise-addition only), NNI swapping, SPR swapping and TBR

swapping. All searches were continued until all possible rearrangements of the

given type had been exhausted without finding a better scoring individual.

Multiple trees of equal score were not stored during each search (multrees=no),

and the best tree from each of the one hundred replicates was retained

(savereps=yes).

2. Model parameters for the GTR+I+G model were estimated by ML using PAUP*

on the tree with the best parsimony score over all of the 400 searches (or one of

the best in the case of ties).

3. All trees obtained from the searches had lnL scores obtained under the GTR+I+G

model with the model parameters fixed at the estimates obtained in step 2.

4. The parsimony and lnL scores of all trees were plotted against one another, and a

linear regression was calculated using Microsoft Excel.

5. For each dataset, six trees were selected by eye along the regression line, with an

attempt made to ensure equal spacing over the full range of scores.

6. For each of the six starting topologies, optimal model parameter values were

estimated by ML in PAUP*.

Replicated GARLI runs were performed on each dataset using three distinct

setups, which will be referred to as the starting conditions:

60

• RAND: Random starting topology and default model parameters. All parameters

optimized by GARLI (ten replicates per dataset, not performed on Gutell3845 due to

computational limitations).

• TOPO: Parsimony starting topology and default starting model parameters. All

parameters optimized by GARLI (four replicates per starting tree, per dataset).

• TOPO+MOD: Parsimony starting topology and ML model parameter estimates

provided. Branch lengths and topology optimized by GARLI, model parameters

fixed (four replicates per starting tree, per dataset).

These replicated allowed investigation of the effects of both starting topology and

fixed model parameters on final optimality and runtimes. However, because of the large

stochastic component of GARLI’s search strategy, there can be significant variation in

runtimes and final optimality even when using exactly the same starting conditions. This

fact makes evaluating the effect of run conditions by eye problematic, and calls for more

rigorous statistical testing. Unfortunately, most parametric statistical tests (such as

ANOVA) that could be used to test for an effect of the starting topology or conditions on

lnL scores or runtimes make the assumption that the data are normally distributed with

equal variances. Because it is not clear that lnL scores or runtimes obtained in replicated

GARLI runs meet these conditions, the less powerful nonparametric Kruskal-Wallis test

was used. This test first requires ranking the raw data (runtimes or final lnL scores)

across groups (topologies or conditions). The average rank of the samples in each group

was then tested against a null distribution of ranks expected in the absence of any effect

of the groups. By defining six groups (one per topology) consisting of four replicates

each, the effect of starting topology may be tested. This was done separately within the

TOPO and TOPO+MOD conditions on each dataset. The effect of fixing model

61

parameters was tested by pooling the data across all six starting topologies into two

groups representing the TOPO and TOPO+MOD conditions, with 24 samples in each.

Note that the RAND condition does not directly fit into the scheme of these

replicated tests because each replicate was started from a different random topology.

Runs using this condition were performed as a test of the feasibility of performing

GARLI searches without supplying a precomputed starting topology, and performance

was compared to the other runs by eye.

Comparison to alternative software

A comparison of the performance of the GARLI algorithm relative to other ML

phylogenetic search programs is of interest, but presents some difficulties. The

comparisons presented here are to two recently developed programs that have been

shown to be the fastest currently available for ML inference. These programs are

PHYML (Guindon and Gasquel, 2003) and RAxML (Stamatakis et. al, 2005). The

versions used were PHYML 2.4.4 and RAxML-VI-HPC ver 1.0. Performing comparisons

to these programs is made more difficult by differences in the implemented evolutionary

models and by a number of computational issues.

Although PHYML implements the same GTR+I+Γ model of sequence evolution

as GARLI, the details of the implementation are subtly different. This results in different

(although in theory equally valid) likelihood scores. However, comparable scores may be

obtained by using a common program to fully optimize model and branch length

parameters on the final topology obtained by each of the algorithms. I chose to use

PAUP* for this purpose, because it is the most stable and probably most commonly used

program for ML inference. Note that the implementations of the GTR+I+Γ model in

GARLI and PAUP* are identical, resulting in equivalent lnL scores. Because the

programs being compared differ both in their intent and ability to optimize model

62

parameters and branch lengths, common scoring also has the benefit of ensuring that

topologies are compared on the basis of their fully maximized lnL score.

Comparison to the RAxML program presents further complications. RAxML

implements site-specific rate heterogeneity (SSRH: Olsen et al, 1994), which offers a

large benefit in speed and memory requirements over the more commonly used discrete

gamma-distributed rate heterogeneity implementation (GRH: Yang, 1994). This

advantage arises because SSRH only requires the computation of each site likelihood for

a single rate, while GRH must average the site likelihoods over a number of rates (most

commonly four, as in GARLI). The use of different models makes comparison of results

between these programs potentially problematic, because there is no guarantee that the

models will favor the same topologies. However, the developer of RAxML notes that the

SSRH model is used primarily for its computational advantages, and agrees that the GRH

model should be used to assess final topology quality (A. Stamatakis, pers. comm.). In

practice, performing inference using the SSRH model in RAxML has proven to be an

excellent method for obtaining topologies that score well under the GRH model. For the

aforementioned reasons, the performance of all programs was compared on the basis of

the lnL scores of their final topologies after optimization in PAUP*.

Other problems presented by performing experiments with PHYML and RAxML

are purely computational. PHYML has by far the most extreme memory requirements of

the three programs, to the degree that it limits the datasets on which it can be run.

Because all experiments were performed on systems containing 2 Gb of system memory,

PHYML runs could not be performed on the largest real datasets, nor on the majority of

the simulated datasets. RAxML presents a different computational problem. The Lonestar

cluster only allows analyses to be run for a maximum of 24 hours. Both GARLI and

RAxML require more than that amount of time to perform analyses on the largest

63

datasets. After 24 hours of a run have elapsed, GARLI may be easily restarted by giving

it the best topology and model parameters that were found before the run was terminated.

GA parameters such as the branch length precision parameter may also be set it their final

values. Although this is not exactly equivalent to allowing a single run of greater than 24

hours to continue until completion, it has no important implications for the experiments

presented here. Unfortunately, RAxML is not able to be restarted in this way. Although

the program offers the option to output checkpoints which could theoretically used to

restart the program, when a RAxML run is started with a checkpoint it treats it as a

completely new search and “forgets” all previous parameter values (A. Stamatakis, pers.

comm.). For this reason, RAxML runs which required greater than 24 hour runtimes

were run on Phylocluster2, which does not enforce a runtime limit. Because the only

difference between the systems is in the processor speed, correcting the runtimes of

analyses performed on Phylocluster2 by a factor of 0.915 (2.8 GHz divided by 3.06 GHz)

should result in runtimes that are comparable to those obtained on Lonestar. All results

presented here will be standardized in this way when necessary.

Multiple PHYML and RAxML runs were attempted for each of the five datasets.

Analyses were performed beginning both from the default starting points of each program

and beginning from the most optimal of the parsimony starting trees provided in GARLI

runs. Only a single default run was performed using PHYML because it uses the

deterministic BIONJ method to obtain a starting topology. Three default runs were

performed with RAxML because its use of parsimony random stepwise addition can

generate a variety of starting topologies. Starting each of the programs from a topology

also used to start GARLI runs allows differences in performance between the programs

due to their ability to create a quality start tree and to search effectively to be

differentiated.

64

Evaluation of topological accuracy

A series of large simulated datasets were generated to allow investigation of the

topological accuracy of solutions obtained by GARLI, RAxML and PHYML. These

datasets range in size from 500 sequences to 4000 sequences, allowing the relationship

between dataset size and accuracy to be measured for each of the programs. Simulated

datasets were generated as follows:

1. A 4000-taxon simulation topology was generated using software written by Tracy

Heath. This software is based upon the birth-death model implemented in PhyloGen

(evolve.zoo.ox.ac.uk/software/PhyloGen/main.html), but additionally allows the birth

and death rates to evolve over the topology. Starting rates were: birth = 0.3 death =

0.2.

2. This ultrametric tree was scaled to have a root-to-tip length of 0.5 and variable rates

of evolution were simulated on the tree. This was done using the rate evolution

model of Kishino, Thorne and Bruno (2001), implemented in software by Tracy

Heath. Rates were evolved over the tree with a starting rate at the root of 1.0. At

each node, new rates were drawn from a lognormal distribution centered on the rate

of the parent node with variance = (ν * edge length). ν is a constant that determines

the amount of autocorrelation among the rates of parent and descendent nodes, and in

this case was set to 1.0. The substitution rate applied to each branch is the average of

the rates of the nodes at each end.

3. Two distinct “genes” of 1398 nucleotides each were simulated on the topology with

Seq-Gen (Rambaut and Grassly, 1997), using simulation parameters corresponding to

estimates obtained from the Rana and Rbcl datasets. Parameters were estimated in

PAUP* under the GTR+I+G model on the best-known tree for each dataset, and

65

appear in the supplemental information at the end of this chapter. The two genes were

concatenated to form the 4000sim dataset of 2796 nucleotides.

4. Sequences were randomly subsampled from the 4000sim dataset, creating smaller

datasets of various sizes. By using the edge lengths of the true simulation tree, it was

ensured that all subsampled datasets had the same tree diameter (maximum

pathlength) as the original 4000 taxon tree. The datasets created by subsampling

ranged from 500 to 3500 taxa in increments of 500. All sequences were chosen

randomly from the full set of 4000 sequences for each dataset size. This means, for

instance, that the 500 taxa of the smallest dataset do not all appear in the 1000 taxon

dataset.

5. For each dataset, 100 parsimony searches using NNI branch swapping were

performed in PAUP*. The tree with the best score under the parsimony criterion was

selected as the starting tree to be used for all runs on that dataset.

The intent of using this procedure was to create a series of relatively realistic

simulated datasets that were directly comparable. Data simulated under two different sets

of model parameters were concatenated to introduce additional heterogeneity and reduce

the inference model’s ability to exactly capture the true generating process. One run was

performed per program per dataset, in each case using the same starting topology. Due to

PHYML’s memory requirements, runs were only able to be performed on the 500 and

1000 sequence datasets.

66

3.3 RESULTS AND DISCUSSION

Starting tree searches

The times required for the PAUP* parsimony searches used to obtain starting

topologies for each dataset appear in Table 3-1. The search times were trivial for the

three smaller datasets, but grow extremely quickly with increasing taxon numbers for

SPR and TBR branch swapping. The one hundred replicate searches using TBR branch

swapping for the Gutell3845 dataset required almost 17 days to complete. The

relationships between the likelihood and parsimony scores of all resulting topologies for

each dataset are depicted in figure 3-1(a-e). All datasets show a correlation between

scores under the two criteria, although this relationship is fairly weak for the Rana

dataset. The relationship between the thoroughness of branch swapping and the

optimality of the resulting topologies is as would be expected, with more intensive

searching resulting in more optimal topologies as measured under either criterion. The

results suggest that very little extra optimality is gained by performing TBR branch

swapping relative to SPR branch swapping, despite the fact that the searches using TBR

took significantly longer. For the larger datasets a significant gap in scores exists

between the topologies obtained by NNI swapping and by SPR swapping.

Search Time (minutes) Ave. Opt. Time
Dataset SA NNI SPR TBR (minutes)
Rana 0.01 0.01 0.07 0.10 1.98
Angio 0.28 0.40 4.30 7.07 47.58
Rbcl 0.38 0.65 4.95 12.02 41.38

1000ARB 6.68 14.22 840.38 1069.97 572.33
Gutell3845 51.92 183.53 16236.20 24375.31 797.92

Table 3-1. Times required to obtain parsimony starting topologies. Total search time of
one hundred parsimony searches performed for each level of branch-
swapping and average time required to optimize branch lengths and model
parameters on a single topology.

67

Figure 3-1. (a.)Rana. (b.)Angio.

68

Figure 3-1. (continued) (c.) Rbcl. (d.) 1000ARB.

69

Figure 3-1. (continued) The relationship between parsimony and likelihood scores of
topologies obtained by parsimony searches in PAUP* with the indicated
types of branch swapping. (a.) Rana, (b.) Angio, (c.) Rbcl, (d.) 1000ARB,
(e.) Gutell3845. The topologies selected for use as GARLI starting
topologies are indicated by circles.

The scores of the six topologies per dataset selected as GARLI starting points

appear in table 3-2, and appear circled in figure 3-1(a-e). The average time required to

estimate optimal model parameters and branch lengths for each of the six chosen starting

topologies ranged from 2 minutes for the Rana dataset to over 13 hours for the

Gutell3845 dataset. A relatively small range of lnL scores was observed among the

topologies chosen for the Rana dataset, but the range of scores between topologies was

quite large for the other datasets.

70

Dataset

Tree# Rana Angio Rbcl 1000_ARB Gutell3845

lnL Length lnL Length lnL Length lnL Length lnL Length

1 -21858.29 4123 -121153.71 23300 -85630.66 16537 -349208.91 77407 -262114.30 49778

2 -21866.94 4128 -121232.02 23331 -85708.19 16565 -349500.32 77515 -262574.61 49915

3 -21879.03 4137 -121354.46 23382 -85911.87 16635 -349970.73 77739 -263841.14 50327

4 -21891.99 4146 -121512.26 23444 -86092.16 16699 -350668.84 78063 -264183.15 50427

5 -21911.43 4157 -121621.07 23488 -86289.85 16769 -351261.51 78313 -264445.61 50545

6 -21932.35 4171 -121779.57 23550 -86436.37 16825 -351588.97 78465 -265084.87 50720

Table 3-2. Optimized log-likelihood and parsimony scores of topologies selected as
GARLI starting points.

GARLI search results

Runtimes and the final lnL scores obtained after parameter optimization in

PAUP* for all runs using parsimony starting topologies appear in table 3-3. Results of

runs using random starting topologies appear in table 3-4. Across all runs there was a

clear correlation between the number of sequences in the dataset and the amount of

variation observed in both final lnL scores and runtimes. Figures 3-2 through 3-5

graphically display the final lnL values and runtimes for each dataset besides Rana. Due

to the lack of variation in final lnL scores and runtimes for the Rana dataset, results from

this dataset were omitted from the figures. For the same reason the results from the Rana

dataset were omitted from the statistical tests of the effect of topology and conditions on

final lnL. The results of all Kruskal-Wallis tests performed on the other datasets are

summarized in table 3-5.

Effect of starting topology

The five datasets studied show a variety of relationships between the starting

topology used for the search and the final lnL values attained. Starting topology appears

to have little effect on the smaller datasets, but a significant effect on the larger ones.

71

 4

To

po
lo

gy
 1

To
po

lo
gy

 2
To

po
lo

gy
 3

To
po

lo
gy

 4
To

po
lo

gy
 5

To
po

lo
gy

 6

D
at

as
et

 C
on

di
tio

n
Re

p
ln

L
tim

e(
m

in
)

ln
L

tim
e(

m
in

)
ln

L
tim

e(
m

in
)

ln
L

tim
e(

m
in

)
ln

L
tim

e(
m

in
)

ln
L

tim
e(

m
in

)

Ra
na

TO
PO

1
-2

18
12

.6
4

15
.8

-2
18

12
.6

7
15

.7
-2

18
12

.6
7

15
.7

-2
18

12
.6

7
15

.9
-2

18
12

.6
7

15
.8

-2
18

13
.4

4
16

.2

2
-2

18
13

.4
4

16
.2

-2
18

12
.6

4
15

.5
-2

18
12

.6
7

15
.7

-2
18

12
.6

4
16

.0
-2

18
12

.6
7

15
.9

-2
18

12
.6

4
15

.9

3
-2

18
12

.6
7

15
.8

-2
18

12
.6

7
15

.8
-2

18
12

.6
4

15
.6

-2
18

12
.6

7
16

.1
-2

18
12

.6
7

15
.7

-2
18

12
.6

4
15

.6

4
-2

18
13

.4
4

16
.3

-2
18

12
.6

4
15

.5
-2

18
12

.6
4

15
.7

-2
18

12
.6

7
16

.0
-2

18
13

.4
4

16
.3

-2
18

12
.6

7
16

.4

TO
PO

+M
O

D
1

-2
18

13
.4

4
15

.9
-2

18
12

.6
4

15
.5

-2
18

12
.6

7
15

.7
-2

18
12

.6
7

15
.8

-2
18

12
.6

4
15

.6
-2

18
12

.6
7

15
.7

2
-2

18
12

.6
4

15
.4

-2
18

12
.6

7
15

.5
-2

18
12

.6
7

15
.4

-2
18

12
.6

4
15

.8
-2

18
12

.6
4

15
.8

-2
18

12
.6

4
15

.9

3
-2

18
13

.4
4

15
.8

-2
18

12
.6

7
15

.5
-2

18
12

.6
7

15
.5

-2
18

12
.6

7
15

.7
-2

18
12

.6
4

15
.5

-2
18

12
.6

7
15

.9

4
-2

18
12

.6
4

15
.4

-2
18

12
.6

4
15

.4
-2

18
13

.4
4

15
.9

-2
18

12
.6

4
16

.0
-2

18
12

.6
4

15
.4

-2
18

12
.6

7
15

.6

A
ng

io
TO

PO
1

-1
21

01
1.

03
11

3.
6

-1
21

01
0.

27
10

4.
6

-1
21

00
2.

86
17

1.
2

-1
21

00
2.

77
20

6.
0

-1
21

01
3.

26
14

3.
6

-1
21

01
2.

95
10

4.
4

2
-1

21
01

0.
38

12
9.

0
-1

21
01

1.
43

12
9.

6
-1

21
00

5.
07

10
5.

5
-1

21
01

2.
02

19
4.

5
-1

21
01

1.
22

10
2.

9
-1

21
01

0.
72

16
3.

1

3
-1

21
01

5.
27

12
9.

0
-1

21
01

0.
27

13
0.

0
-1

21
01

0.
54

10
5.

8
-1

21
01

0.
38

19
5.

2
-1

21
00

2.
66

10
2.

5
-1

21
01

0.
72

14
0.

0

4
-1

21
01

2.
49

15
9.

6
-1

21
01

0.
38

10
5.

2
-1

21
00

3.
16

11
3.

4
-1

21
02

1.
51

13
3.

7
-1

21
01

0.
72

13
8.

5
-1

21
00

4.
73

13
8.

0

TO
PO

+M
O

D
1

-1
21

01
3.

26
90

.6
-1

21
01

0.
38

10
1.

7
-1

21
01

3.
24

89
.7

-1
21

01
5.

47
97

.7
-1

21
01

0.
64

10
1.

5
-1

21
00

4.
95

90
.4

2
-1

21
01

0.
27

12
3.

6
-1

21
01

0.
27

13
0.

7
-1

21
01

2.
73

13
2.

7
-1

21
01

5.
45

85
.3

-1
21

01
2.

78
11

5.
0

-1
21

01
2.

95
92

.8

3
-1

21
01

0.
54

86
.0

-1
21

01
0.

27
91

.7
-1

21
01

0.
98

11
0.

0
-1

21
01

5.
65

11
2.

4
-1

21
01

3.
91

10
6.

0
-1

21
01

0.
96

11
3.

7

4
-1

21
01

5.
79

84
.7

-1
21

01
0.

27
88

.6
-1

21
01

0.
38

91
.9

-1
21

00
2.

66
11

5.
7

-1
21

01
5.

79
91

.2
-1

21
02

2.
94

93
.4

Rb
cl

TO
PO

1
-8

54
16

.6
8

10
0.

7
-8

54
40

.5
1

10
7.

4
-8

54
15

.2
8

10
5.

2
-8

54
21

.0
3

12
7.

3
-8

54
13

.6
3

10
5.

3
-8

54
14

.8
9

15
4.

2

2
-8

54
12

.9
3

97
.9

-8
54

32
.8

3
11

1.
6

-8
54

22
.0

6
12

0.
8

-8
54

31
.1

7
10

6.
4

-8
54

19
.7

5
15

2.
7

-8
54

17
.0

1
79

.7

3
-8

54
14

.6
6

91
.8

-8
54

29
.1

2
11

3.
2

-8
54

17
.0

4
12

5.
0

-8
54

27
.6

4
15

2.
7

-8
54

12
.3

7
12

9.
1

-8
54

22
.7

8
13

7.
3

4
-8

54
19

.1
7

97
.1

-8
54

40
.2

7
12

9.
7

-8
54

18
.9

4
11

9.
7

-8
54

24
.2

2
10

7.
7

-8
54

18
.7

8
11

5.
7

-8
54

27
.1

4
96

.8

TO
PO

+M
O

D
1

-8
54

22
.2

7
61

.8
-8

54
44

.4
6

12
9.

7
-8

54
19

.2
4

91
.6

-8
54

18
.5

0
94

.7
-8

54
16

.9
6

68
.6

-8
54

15
.9

3
10

8.
9

2
-8

54
14

.9
2

84
.2

-8
54

47
.3

8
15

7.
1

-8
54

17
.4

1
84

.5
-8

54
24

.1
2

11
7.

7
-8

54
17

.6
8

70
.5

-8
54

15
.2

1
79

.1

3
-8

54
15

.2
5

94
.6

-8
54

57
.7

8
82

.2
-8

54
22

.4
7

10
6.

5
-8

54
20

.2
9

10
7.

3
-8

54
26

.9
5

65
.5

-8
54

22
.2

7
12

0.
0

4
-8

54
18

.9
9

63
.4

-8
54

40
.8

4
97

.5
-8

54
14

.1
6

92
.9

-8
54

17
.2

7
11

7.
4

-8
54

17
.1

8
60

.8
-8

54
17

.2
4

94
.0

Ta
bl

e
3-

3.
 (C

on
tin

ue
d

on
 n

ex
t p

ag
e)

72

To

po
lo

gy
 1

To
po

lo
gy

 2
To

po
lo

gy
 3

To
po

lo
gy

 4
To

po
lo

gy
 5

To
po

lo
gy

 6

D
at

as
et

 C
on

di
tio

n
 R

ep
ln

L
tim

e(
m

in
)

ln
L

tim
e(

m
in

)
ln

L
tim

e(
m

in
)

ln
L

tim
e(

m
in

)
ln

L
tim

e(
m

in
)

ln
L

tim
e(

m
in

)

10
00

A
RB

TO
PO

1
-3

48
43

6.
79

31
5.

2
-3

48
46

0.
95

51
3.

4
-3

48
50

0.
05

68
1.

4
-3

48
50

8.
93

53
5.

2
-3

48
55

1.
97

77
7.

4
-3

48
54

9.
47

66
2.

9

2
-3

48
46

3.
77

26
5.

5
-3

48
54

7.
25

51
0.

2
-3

48
54

5.
11

56
4.

9
-3

48
45

5.
69

51
0.

5
-3

48
48

8.
78

79
3.

7
-3

48
51

3.
57

53
6.

5

3
-3

48
47

6.
00

34
8.

4
-3

48
56

9.
63

48
4.

0
-3

48
59

5.
10

62
9.

8
-3

48
52

4.
32

45
1.

5
-3

48
53

5.
36

57
2.

1
-3

48
52

7.
87

39
1.

0

4
-3

48
41

9.
36

72
5.

0
-3

48
49

6.
29

62
8.

3
-3

48
52

8.
69

52
0.

0
-3

48
45

5.
56

84
8.

6
-3

48
67

6.
86

56
9.

2
-3

48
47

6.
97

71
6.

9

TO
PO

+M
O

D
1

-3
48

47
8.

11
45

1.
4

-3
48

42
0.

32
53

3.
0

-3
48

53
4.

31
39

4.
3

-3
48

53
7.

35
32

2.
9

-3
48

44
3.

82
73

1.
3

-3
48

45
9.

23
58

4.
3

2
-3

48
45

0.
20

28
2.

6
-3

48
48

5.
16

52
1.

4
-3

48
50

7.
03

32
2.

4
-3

48
53

6.
10

31
5.

0
-3

48
54

4.
99

73
1.

6
-3

48
61

3.
38

52
0.

4

3
-3

48
41

5.
47

41
7.

0
-3

48
50

5.
52

42
5.

1
-3

48
52

8.
91

42
4.

6
-3

48
50

1.
10

24
2.

1
-3

48
47

9.
62

67
5.

2
-3

48
60

8.
93

38
0.

6

4
-3

48
47

5.
54

32
1.

6
-3

48
42

2.
56

55
0.

5
-3

48
54

2.
09

27
7.

1
-3

48
46

4.
83

38
3.

8
-3

48
55

2.
26

42
3.

7
-3

48
50

9.
56

69
3.

8

G
ut

el
l3

84
5

TO
PO

1
-2

61
02

3.
44

22
48

.9
-2

61
06

5.
14

29
79

.0
-2

60
99

0.
96

23
12

.4
-2

60
99

7.
11

27
12

.4
-2

61
04

9.
18

29
85

.9
-2

61
16

7.
28

31
08

.6

2
-2

61
02

3.
91

21
03

.3
-2

61
05

9.
99

31
59

.7
-2

61
19

6.
86

28
61

.1
-2

61
30

5.
72

22
64

.0
-2

61
06

1.
57

19
83

.8
-2

61
27

3.
68

27
27

.1

3
-2

60
99

0.
96

24
62

.7
-2

61
18

9.
48

18
39

.9
-2

61
12

6.
12

25
63

.0
-2

61
27

9.
81

23
49

.6
-2

61
17

6.
99

24
72

.5
-2

61
18

1.
89

30
99

.8

4
-2

60
99

7.
11

23
54

.0
-2

61
10

4.
08

30
76

.3
-2

61
29

1.
31

18
18

.9
-2

61
25

3.
69

28
10

.1
-2

61
02

2.
00

22
63

.2
-2

61
38

6.
56

23
41

.9

TO
PO

+M
O

D
1

-2
61

00
3.

87
17

28
.5

-2
61

12
7.

93
13

79
.4

-2
61

25
3.

60
19

45
.7

-2
61

29
4.

37
18

34
.1

-2
61

11
4.

02
16

54
.3

-2
61

40
8.

40
14

13
.8

2
-2

61
00

0.
47

20
98

.7
-2

61
15

8.
25

13
61

.4
-2

61
17

9.
69

21
77

.5
-2

61
28

2.
63

20
19

.9
-2

61
13

8.
87

19
46

.6
-2

61
36

3.
55

19
22

.9

3
-2

61
01

1.
10

14
17

.5
-2

61
10

4.
60

20
91

.0
-2

61
20

9.
70

20
52

.6
-2

61
32

8.
93

16
79

.2
-2

61
17

0.
53

17
58

.6
-2

61
37

5.
64

17
76

.7

4
-2

60
96

7.
72

21
79

.5
-2

61
10

2.
49

15
52

.5
-2

61
32

2.
07

18
16

.1
-2

61
20

1.
43

24
06

.8
-2

61
13

2.
33

16
66

.4
-2

61
43

9.
80

16
25

.8

Ta
bl

e
3-

3.
 R

es
ul

ts
of

 G
A

RL
I a

na
ly

se
s p

er
fo

rm
ed

 w
ith

 p
ar

sim
on

y
sta

rti
ng

 to
po

lo
gi

es
.

Lo
g-

lik
el

ih
oo

d
(ln

L)
 sc

or
es

 re
pr

es
en

t
th

e
sc

or
e

ob
ta

in
ed

 a
fte

r o
pt

im
iz

at
io

n
of

 b
ra

nc
h

le
ng

th
s a

nd
 m

od
el

 p
ar

am
et

er
s i

n
PA

U
P*

.
Th

e
six

 st
ar

tin
g

to
po

lo
gi

es
 a

re
 o

rd
er

ed
 fr

om
 th

e
m

os
t o

pt
im

al
 (T

op
ol

og
y

1)
 to

 le
as

t o
pt

im
al

 (T
op

ol
og

y
6)

.

73

Rana Angio Rbcl 1000ARB

Rep lnL time(min) lnL time(min) lnL time(min) lnL time(min)

1 -21812.67 16.1 -121010.27 140.6 -85439.97 189.4 -349644.71 1103.9

2 -21812.64 16.0 -121002.66 144.8 -85495.40 113.9 -350294.35 1867.1

3 -21812.67 16.5 -121005.83 122.8 -85430.51 156.3 -348659.68 1744.5

4 -21812.67 16.8 -121010.27 111.3 -85436.04 98.8 -349905.73 1439.9

5 -21812.67 17.0 -121020.91 150.6 -85442.27 154.0 -350236.01 1361.2

6 -21812.64 17.1 -121002.66 115.1 -85487.77 131.9 -349345.51 1002.0

7 -21812.64 17.1 -121010.27 113.2 -85520.19 111.3 -351515.70 818.0

8 -21812.67 16.7 -121010.27 114.8 -85423.12 113.3 -350282.06 1151.1

9 -21812.67 16.0 -121003.85 142.1 -85422.94 163.9 -348517.18 1424.5

10 -21812.64 16.2 -121165.14 116.4 -85423.08 146.6 -348582.00 1439.8

Table 3-4. Results of GARLI analyses performed with random starting topologies. Log-
likelihood (lnL) scores represent the score obtained after optimization of
branch lengths and model parameters in PAUP*.

Effect of starting topology
on lnL

Effect of starting topology
on runtime

Effect of fixed model
parameters on:

within within within within

Dataset TOPO TOPO+MOD TOPO TOPO+MOD lnL Runtime

Angio 0.362 0.312 0.155 0.842 0.527 0.018*

Rbcl 0.007* 0.048* 0.210 0.016* 0.995 0.096

1000ARB 0.044* 0.154 0.240 0.012* 0.918 0.297

Gutell3845 0.072 0.001* 0.344 0.214 0.569 0.003*

Table 3-5. P-values resulting from Kruskal-Wallis nonparametric tests. P-values of less
that 0.05 indicated with asterisks.

This is consistent with the notion that larger numbers of sequences lead to larger tree-

spaces that are more difficult to search, making higher quality starting points in that space

more beneficial. The lack of variation in scores obtained for the Rana dataset suggests

that starting topology is not important for such small datasets, and runs performed from

random starting topologies perform as well as those in which a topology was provided.

Analyses performed on the Angio dataset result in more variation in scores, but no

evidence that the starting topology provided has a consistent effect on the final score.

Interestingly, the lnL scores obtained across runs on this dataset suggest the presence of a

74

Figure 3-2. Results of GARLI runs performed on the Angio dataset. Key: circles=TOPO
condition, triangles=TOPO+MOD condition, squares=RAND condition.

75

Figure 3-3. Results of GARLI runs performed on the Rbcl dataset. Key: circles=TOPO
condition, triangles=TOPO+MOD condition, squares=RAND condition.

76

Figure 3-4. Results of GARLI runs performed on the 1000ARB dataset. RAND condition
runs are omitted for clarity. Key: circles=TOPO condition,
triangles=TOPO+MOD condition.

77

Figure 3-5. Results of GARLI runs performed on the Gutell3845 dataset. Key:
circles=TOPO condition, triangles=TOPO+MOD condition.

78

local optimum with a score of approximately -121,010 lnL that relatively few runs

escape. A higher proportion of runs started from random topologies on the Angio dataset

avoid entrapment in this optimum than do runs starting from parsimony trees (4 of 10 =

40% vs. 8 of 48 = 16.7%). Although this effect is only weakly significant, it is consistent

with the idea that random starting topologies can help avoid entrapment in local optima.

The results of analyses performed on the Rbcl dataset show a weakly significant

effect of starting topology on final lnL for both the TOPO (p=0.007) and TOPO+MOD

(p=0.048) starting conditions. Interestingly, it appears that it is the identity of the starting

topology rather than its degree of optimality that is important. Tree2, the second most

optimal starting topology clearly performs the most poorly, suggesting that searches

beginning from this topology are prone to entrapment in a local optimum. These results

indicate that performing runs with a variety of starting points is helpful in finding more

optimal results, but that this effect is not necessarily directly related to the optimality of

the starting tree. On this dataset, results obtained using random starting topologies do not

fare as well relative to ones obtained using parsimony starting topologies as they did for

the two smaller datasets.

The 1000ARB dataset shows a weakly significant effect of starting topology on

final optimality for the TOPO starting condition (p=0.044), but not for the TOPO+MOD

condition. This dataset also presents much greater variation in final likelihood scores than

did the smaller datasets. The RAND starting condition performs quite poorly on this

dataset, and is omitted from figure 3-4. The best results obtained searching from random

starting topologies are on par with the worst scoring of the runs using parsimony starting

trees, and the worst of the RAND runs are thousands of lnL units short of the best known

trees. The feasibility of using random starting trees in GARLI clearly plummets as taxon

numbers grow.

79

The Gutell3845 dataset shows a fairly strong effect of starting topology on final

lnL scores within the TOPO+MOD condition (p=0.001). Unlike some of the smaller

datasets, a strong linear relationship between the score of the starting topology and the

final lnL obtained is apparent, although Tree5 does not fit into this general pattern. As

with the 1000ARB dataset, there is a large amount of variation in lnL scores across runs.

Apart from the small Rana dataset, variation in runtimes is observed for all

datasets both in run using different starting topologies and in replicated runs performed

using a single topology. However, only the Rbcl and 1000ARB datasets show a

significant effect of starting topology on runtimes (p=0.016 and p=0.12, respectively),

and only under the TOPO+MOD condition. The effect appears to be weakly correlated

with starting topology optimality, with more optimal starting topologies resulting in

shorter runtimes on average. Runtimes for the 1000ARB and Gutell3845 datasets are

extremely variable, representing more than a three-fold variation in times. Runs under the

RAND condition require fairly similar runtimes to those under the TOPO condition for

the smaller datasets, but for the 1000ARB dataset take approximately twice as long on

average.

Effect of fixed model parameters

None of the datasets demonstrate that fixing model parameters has a consistent

effect on final tree optimality. This suggests that the model parameter values estimated on

the starting topologies are close enough to the globally optimal values that they do not

favor significantly different topologies. Fixed model parameters do have a consistent

effect in shortening average runtimes for all but the smallest dataset, although this effect

is only significant for the Angio and Gutell3845 datasets. When model parameters are

estimated during a search the average runtimes are approximately 25% longer for the

Rbcl and 1000ARB datasets, about 33% longer for the Angio dataset and nearly 40%

80

longer for the Gutell3845 dataset. This effect is impressive, although if the amount of

time required by the model estimation in PAUP* is included (divided by four because

each estimate was used by four replicates), the effective speed increase due to fixing

model parameters is significantly less.

Overall, the results suggest that fixing model parameters can be an effective way

of moderately reducing runtimes without affecting solution quality. If model parameters

are estimated a single time on a high quality topology and used in conjunction with many

starting topologies, the overhead inherent in this pre-estimation step will be considerably

less. Another potential starting condition that was not investigated here would involve

starting with a random topology but fixing model parameters at pre-estimated values.

This condition might perform quite well, at least on the smaller datasets.

Comparison to alternative ML search software

The runtimes and optimized lnL scores of the topologies returned by PHYML and

RAxML searches appear in Table 3-6. Because these programs optimize model

parameters during the search and begin searching from a topology estimated by a fast tree

inference method, the fairest comparison is to GARLI runs performed with the TOPO

starting condition. Any mention in this section of results obtained by GARLI refers only

to the results obtained from the TOPO runs. The “Performance Relative to GARLI”

entries in 3-6 represent the proportion of GARLI runs for that dataset whose scores were

exceeded by each solution. Although many more GARLI runs were performed than were

performed with the other programs, this measure should give some indication of relative

performance. As noted previously, PHYML’s memory requirements made it impractical

to perform analyses on the two largest datasets.

The two runs performed with PHYML (one with PHYML’s default BioNJ start

tree, and one with the best parsimony tree used to seed GARLI) on the three smaller

81

Rana Angio

Performance Performance

Program Topology lnL time (min) Relative to GARLI lnL time (min) Relative to GARLI

RAxML Provided -21812.84 1.8 0.17 -121014.92 53.8 0.08

Default1 -21813.05 2.0 0.17 -121020.30 67.6 0.04

Default2 -21831.44 1.6 0.00 -121021.42 48.7 0.04

Default3 -21831.44 1.6 0.00 -121021.28 44.3 0.04

PHYML Provided -21821.78 6.1 0.00 -121151.76 51.0 0.00

Default -21860.47 5.6 0.00 -121090.95 70.8 0.00

Rbcl 1000ARB

Performance Performance

Program Topology lnL time (min) Relative to GARLI lnL time (min) Relative to GARLI

RAxML Provided -85433.22 52.8 0.08 -348424.35 955.8 0.67

Default1 -85455.25 61.0 0.00 -348484.23 788.5 0.96

Default2 -85520.52 63.3 0.00 -348724.51 763.0 0.04

Default3 -85465.45 59.4 0.00 -348467.47 887.5 0.83

PHYML Provided -85557.74 32.0 0.00 - - -

Default -85661.84 34.8 0.00 - - -

Gutell3845

Performance

Program Topology lnL time (min) Relative to GARLI

RAxML Provided -260945.92 2561.2 1.00

Default1 -261193.52 2001.4 0.29

Default2 -261386.68 1816.0 0.00

Default3 -261204.35 2137.4 0.25

Table 3-6. Results of RAxML and PHYML analyses performed on the five real datasets.
“Performance Relative to GARLI” represents the proportion of 24 GARLI runs
performed under the TOPO condition whose scores are exceeded by the results of
each search. Due to its memory requirements, PHYML analyses were not
performed on the largest datasets.

datasets result in final solutions with very different optimality. This suggests that the

starting topology has a strong effect on the results of PHYML runs. It is thus somewhat

unfortunate that the program only implements the deterministic BIONJ algorithm to

obtain a starting topology, as this algorithm cannot produce a variety of topologies. On

the Rana and Rbcl datasets the run beginning with a provided parsimony tree performed

better, while the default BIONJ tree was superior on the Angio dataset. All searches

82

performed with PHYML resulted in topologies that are lower scoring that any of the 24

GARLI runs performed on the same datasets under the TOPO condition. Because the two

algorithms implement the same evolutionary model, these differences in scores cannot be

due to different rankings of topologies. The average runtimes for PHYML searches are

much shorter than those of GARLI, generally taking between 30% and 50% of the time

required by GARLI.

The optimality of the results obtained in RAxML searches are much more

comparable to those obtained by GARLI. However, the relative performance of the two

programs varied across datasets. Unlike GARLI, RAxML does not provide consistent

results on the Rana dataset. Although two of the runs resulted in solutions with scores

almost identical to GARLI’s, the other two runs resulted in a tree that scores nearly 20

lnL units worse. RAxML performed more consistently when analyzing the Angio dataset,

but its scores were less optimal than almost all of the GARLI runs performed under the

TOPO condition. These differences in score were all less than 20 lnL. GARLI clearly

outperformed RAxML in analyses of the Rbcl dataset. Only one of the RAxML runs

resulted in a topology with an optimized score that overlapped with the range of scores

obtained by GARLI under the TOPO condition. RAxML runtimes on the three smaller

datasets were all much shorter than GARLI’s, and shorter than PHYML’s runtimes on the

Rana and Angio datasets.

The relative performance of RAxML and GARLI is less clear on the two largest

datasets. In analyses of the 1000ARB dataset, three of the RAxML results were more

optimal than the majority of the GARLI runs. However, the four topologies returned by

RAxML on this dataset scored more poorly than all but one GARLI run. Results for the

Gutell3845 dataset show a similar pattern, but are even more extreme. On this dataset, the

scores of the topologies obtained by RAxML fully bracket the scores of topologies

83

obtained by GARLI. RAxML runs resulted both in a topology that was more optimal than

all GARLI results as well as a topology that was less optimal than all GARLI results.

These results demonstrate that RAxML is clearly less consistent than GARLI in obtaining

high quality solutions on very large datasets. However, because RAxML’s most optimal

topologies outscore GARLI’s, RAxML may be a better choice for the analysis of these

datasets when multiple runs from different starting topologies are performed.

Although it is possible to rank the performance of ML heuristics by simply

comparing the final lnL scores of solutions, such a comparison ignores the fact that more

optimal solutions may not necessarily be significantly more optimal. The issue of what

constitutes significant differences between topologies is not a simple one. There is not a

standard number of lnL units that may be considered significant across topologies

because the distribution of lnL scores depends very strongly on details of the particular

dataset. The tests that may be used to assess the significance of likelihood differences

between topologies are discussed in detail by Goldman et al. (2000). The most

appropriate test in the present case is the Shimodiara-Hasegawa test (SH: Shimodaira and

Hasegawa, 1999). This test takes a set of topologies as input and indicates which trees

may be considered significantly less optimal. This test was performed in PAUP* using

the RELL resampling method. For each dataset the set of trees tested contained all

PHYML and RAxML results and all GARLI results under the TOPO condition, for a

total of 30 trees. Unfortunately, due to a bug in PAUP*, it is not possible to perform an

accurate SH test on very large datasets (D. Swofford, pers. com.). For this reason only the

topologies obtained for the Rana, Angio and Rbcl datasets were tested for significance.

The results of the SH tests show that almost none of the trees tested on any of these three

datasets can be rejected as being significantly less optimal. The only topologies that were

rejected resulted from PHYML searches. These were the trees resulting from both

84

PHYML searches on the Rbcl dataset, and the search using a parsimony starting tree on

the Angio dataset.

Another comparison that may be made between the three programs is the degree

of topological similarity between the results returned by different runs. Using the same

sets of 30 trees tested above, the Robinson-Foulds tree distance metric (RF: Robinson and

Foulds, 1981) was calculated between all pairs of topologies. By calculating the average

pairwise RF distance between all trees obtained by a single program, a measure of that

program’s topological consistency was obtained. By calculating the average pairwise

distances of topologies between programs, the degree of similarity of the results was

measured. The maximum RF distance between topologies for a dataset of n taxa is 2(n-3).

The average pairwise RF distances were transformed into the average proportion of

shared bipartitions by first subtracting them from the maximum distance and then

dividing by the maximum. The resulting measures of topological similarity are presented

in Table 3-7. These results show that all of the programs consistently return fairly similar

topologies. PHYML seems to have the least consistency, but because only two trees

were included from the program the values may not be very accurate. The average

proportion of the topology that is recovered consistently clearly drops for GARLI and

RAxML as the datasets become larger.

Simulated dataset analyses

The results of the analyses performed on simulated datasets are summarized in

Table 3-8. Although efforts were made to make the simulated datasets as realistic as

possible by using a realistic cladogenesis model and simulating under multiple

evolutionary models, it is clear that they fall short of reality in terms of the difficulty of

tree inference. Even fast searches using NNI branch swapping under the parsimony

criterion were able to obtain topologies with less than 20% of the bipartitions inferred

85

Average proportion of bipartitions shared in pairwise topological comparisons
between

GARLI RAxML PHYML GARLI GARLI RAxML
x x x X x x

Dataset GARLI RAxML PHYML RAxML PHYML PHYML
Rana 0.94 0.95 0.81 0.93 0.85 0.87
Angio 0.95 0.90 0.79 0.88 0.78 0.80
Rbcl 0.93 0.88 0.83 0.85 0.78 0.78

1000ARB 0.84 0.86 - 0.82 - -
Gutell3845 0.63 0.69 - 0.59 - -

Table 3-7. Topological similarity of results obtained by GARLI, RAxML and PHYML.
The values represent the average proportion of bipartitions shared between
topologies in pairwise comparisons, with all topologies obtained from each
program grouped together.

Proportion of bipartitions incorrect
Number of sequences Parsimony NNI search PHYML RAxML GARLI

500 0.22 0.11 0.12 0.11
1000 0.19 0.14 0.13 0.13
1500 0.16 - 0.12 0.12
2000 0.16 - 0.12 0.11
2500 0.14 - 0.11 0.11
3000 0.15 - 0.11 0.11
3500 0.15 - 0.11 0.12
4000 0.16 - 0.12 0.12

Table 3-8. Topological accuracy of analyses performed on simulated datasets.

incorrectly on all but the 500 sequence dataset. The accuracy of topologies inferred by

RAxML, GARLI and PHYML (on the two datasets that were possible with its memory

requirements) were very similar. All of the programs attained between 85% and 90%

accuracy on all of the datasets ranging from 500 sequences through 4000. All ML

analyses resulted in topologies with lnL scores that exceeded that of the true tree,

although the scores of the parsimony starting topologies did not. A slight effect of

increased taxon sampling on accuracy is apparent in the parsimony starting trees, but for

86

ML the accuracy is essentially constant across dataset sizes. Runtimes follow the pattern

observed in the analysis of the real datasets, with PHYML being the fastest, followed by

RAxML and GARLI. GARLI’s runtimes for the simulated dataset analyses were similar

to the runtimes observed for the real data analyses of datasets of similar sizes.

3.4 CONCLUSIONS

The results presented here demonstrate that the GARLI algorithm is able to

perform efficient and consistent ML heuristic searches on very large datasets. It compares

quite favorably with two recently developed ML programs that have previously been

shown to outperform older software such as PAUP* and fastDNAml (Guindon and

Gascuel, 2003; Stamatakis et al., 2005). GARLI clearly outperforms PHYML in terms of

solution optimality, although it cannot compete in terms of runtimes. GARLI performs

fairly comparably to RAxML across a range of datasets, with GARLI appearing to have

an edge in terms of optimality on datasets consisting of less than one thousand sequences.

These results also suggest a set of recommendations about how GARLI should

optimally be run. Although the effect of the starting topology on the outcome of searches

is somewhat dataset specific, using a wide variety of topologies is clearly to be

recommended. For smaller datasets it appears that the optimality of the starting

topologies is not particularly important, although it does become so as the number of

sequences grow. For datasets of less than several hundred sequences random starting

topologies are also a viable option. If accurate estimates of model parameters can be

obtained, fixing them during a GARLI search can have a beneficial effect on runtimes

with little or no detrimental effect on optimality.

The effects of the large number of parameters controlling the details of the genetic

algorithm were not investigated here. GARLI’s performance can most likely be improved

further by finding the optimal settings of parameters controlling the selection scheme,

87

mutation probabilities and distribution of topological rearrangements. Future experiments

will need to be performed toward this end.

88

SUPPLEMENTAL INFORMATION

Default Garli Settings
population size = 4 individuals
holdover = 1 individual
selection intensity = 0.5
initial Pb = 0.5
minimum Pb = 0.01
number of Pb reductions = 40
topology mutation weight = 1.0
model mutation weight = 0.05
branch-length mutation weight = 0.2
NNI mutation weight = 0.2
SPR mutation weight = 0.3
limSPR mutation weight = 0.5
limSPR reconnection range = 6
mean number of branch-length mutations = 5
gamma shape of model mutation multiplier = 1000
gamma shape of branch-length mutation multiplier = 1000
update interval length = 100
update intervals stored = 5
maximum memory for conditional likelihoods = 1600 mb

Model parameters used for simulation

Rana: Rate Matrix: (2.21, 8.21, 2.37, 0.91, 16.54, 1.0)

Base Frequencies: (0.35, 0.21, 0.15, 0.29)

Alpha shape parameter of gamma rate distribution: 0.56

Proportion of invariable sites: 0.34

Rbcl: Rate Matrix: (1.08, 3.72, 0.34, 1.61, 3.03 1.0)

Base Frequencies: (0.30, 0.19, 0.15, 0.36)

Alpha shape parameter of gamma rate distribution: 0.58

Proportion of invariable sites: 0.23

89

Chapter 4: The Parallel GARLI Algorithm

4.1 INTRODUCTION

As large computer clusters have become less costly and more common in recent

years, they have presented a new resource to be applied to phylogenetic inference. The

notion that multiple processors can be used to explore the extremely large search spaces

presented by phylogenetic tree searches is an attractive one. It becomes even more

attractive as the number of sequences analyzed increases or when computationally

intensive probabilistic methods are used. Systematists should recognize that common

search methodologies such as performing multiple independent searches from distinct

starting topologies are inherently parallel in nature. Beyond such embarrassingly parallel

independent searches, a nearly infinite number of schemes may be imagined in which

multiple processors work in a coordinated fashion to perform a search. Several simple

and easily controllable schemes of coordinated searching have been implemented in the

parallel GARLI algorithm (henceforth P-GARLI).

A fine (yet important) distinction may be made between classes of parallel

algorithms. What might be termed a “typical” parallel algorithm is created by taking a

particular serial algorithm and dividing the required computation between multiple

processors. By definition, this parallel algorithm must result in the same solution as the

serial algorithm on which it is based, but ideally in a shorter period of time. The best case

scenario in such implementations is to develop a parallel algorithm that allows a linear

speedup, meaning that the parallel runtime is equal to the serial runtime divided by the

number of processors used. In practice, various sources of computational overhead cause

parallel algorithms to fall short of this ideal goal.

90

Other parallel algorithms do not generalize a particular serial algorithm to allow

the use of multiple processors, but rather develop a different algorithm that may leverage

the power of multiple processors in unique ways. This sort of parallel application may

improve upon serial algorithms in terms of solution quality as well as in runtime.

Improvements in solution quality might come in the form of an increased probability of

returning high quality solutions, or in the ability to return solutions more optimal than can

be obtained with serial analyses. It is with these goals in mind that P-GARLI was

designed.

A number of programs able to perform ML phylogenetic inference on parallel

computer systems are available. These include parallel versions of fastDNAml (Stewart

et al., 2001), GAML (Brauer et al., 2003), and RAxML (Stamatakis et al., 2005). Each of

these is a direct parallelization of the respective serial algorithm, and thus the application

of parallel resources acts only to decrease runtimes. The approach taken by P-GARLI is

to implement a more coarse-grained form of parallelism, in which each processor

performs something akin to the serial GARLI algorithm. This approach is particularly

attractive in the GA framework, where the coexistence of multiple partially independent

populations has been shown to be an efficient search strategy (see Cantu-Paz, 2001).

Such a meta-population GA approach is also taken by MetaPIGA (Lemmon and

Milinkovich, 2002), although it is implemented for execution on a single processor.

4.2 THE P-GARLI ALGORITHM

Algorithm overview

An astounding number of approaches to the implementation of a parallel GA have

been presented in the GA literature. The parallel GA taxonomy of Nowostawski and Poli

(1999) divides these approaches first by whether they implement a single population or

91

multiple partially independent populations, also termed demes or metapopulations.

Multiple population approaches are further categorized by the number of individuals in

each population and the scheme of inter-population migration. The approach taken by P-

GARLI uses a moderate number of populations, with a small number of individuals in

each. A single population is designated the master, and all other populations are slaves.

Migration is hierarchical, such that the master may communicate with all slaves, but each

slave may communicate only with the master. Note that although I will term this a

master-slave migration scheme, the term “master-slave parallelization” is used in the GA

literature to refer to a single population implementation in which the slave processors are

used to evaluate the fitness of individuals (as in the parallel implementation of GAML).

P-GARLI’s communication scheme was chosen partly because of its ease of

implementation, but also because it lends itself well to bestowing the global decision

making power of the parallel algorithm on a single processor. A run of the parallel

algorithm may be considered a single distributed search, with the master serving to

collect the solutions obtained by the slaves and optionally to exert control over where in

the space they search. The master maintains its own population of solutions and performs

the typical GA activities of reproduction, mutation and selection, in addition to tasks

related to the management of the slaves. One clear downside of a master-slave

communication scheme is that it does not scale well to large numbers of processors

because the single master becomes overwhelmed. One potential solution to this

scalability problem is to add another level to the hierarchy. In such a scheme, groups of

slave populations would communicate with sub-master populations that in turn act as

slaves to a single “super-master” population. I have not yet attempted this approach in P-

GARLI..

92

The parallel algorithm begins by creating starting populations of individuals for

each processor. As with the serial algorithm, the starting topologies may either be random

or user-specified. Different starting topologies may be specified for each slave

population, allowing a large amount of topological variation to be present from the

outset. Each population then begins evolving more optimal solutions using a process very

similar to the serial GARLI algorithm. In addition to the (serial repertoire) the master also

applies an operator that creates new topologies by recombining existing ones. Migration

between populations occurs under certain conditions that will be discussed below. The

termination condition is the same as that of the serial algorithm (i.e., no changes in

topology that increase the lnL score significantly over a large number of generations), but

the possible topology changes also include new topologies received in migration and

those created by recombination.

Inter-population communication

Communication between populations in P-GARLI is implemented through calls

to standard MPI libraries (Message Passing Interface: see www.unix.mcs.anl.gov/mpi/).

MPI is a flexible (although somewhat archaic) standard for passing arbitrary messages

between processors connected by any type of network. Two general types of MPI

communication may be distinguished, non-blocking and blocking (also asynchronous and

synchronous). By analogy, a non-blocking message is similar to mailing a letter, in that

the sender may move on to other tasks immediately after the message has been sent.

Blocking messages, on the other hand, may be likened to a telephone call in which the

sender cannot perform other activities until the receiver answers and the message is

communicated. Blocking messages are typically called for when detailed coordination

between processes is necessary, usually taking the form of messages being passed back

and forth that are conditional on one another. The potential drawback of blocking

93

messages is that processors may not perform any computation until messages have been

sent or received. As will become apparent, the P-GARLI algorithm does not require this

sort of detailed coordination between populations. For this reason, P-GARLI makes use

of non-blocking messages only, ensuring that processors never waste time waiting for the

receiver of a message to be available.

P-GARLI implements a very simple means of transmitting the information

constituting an individual solution to another population. The topology of the individual

to be sent is simply transformed into Newick tree representation, including branch

lengths, and then sent as a string of characters. These messages represents a very modest

amount of network traffic, as the string representing a 1000 taxon tree requires a message

of less than 30 kilobytes. A short message encoding the model parameter values is also

sent, but in binary rather than character format. Once a message is received, it is

transformed back into an internal representation using the same function used to read

starting topologies from file.

Master-slave roles

The tasks performed by each of the slaves are nearly identical to those performed

by the serial GARLI algorithm. All settings used to specify aspects of the serial

algorithm, such as operator probabilities, operator details and selection intensity may be

set independently for the master and slaves. In addition, the slaves adaptively alter

mutation probabilities and reduce the branch-length optimization parameter (Pb)

independently. The only added task for the slave populations is the requirement to

communicate with the master. At the end of each generation, the slave checks if a pre-

specified send interval (measured in seconds) has been exceeded. If it has, the slave sends

a copy of its currently most optimal individual to the master. At the end of each

generation the slave also checks to see if a new individual has arrived from the master. If

94

so, the string representation is converted into an individual. The new individual then

replaces the least fit individual in the population at that point. Once it is inserted into the

population, the new individual behaves identically to the other individuals. The new

individual will quickly dominate the population if it is of higher fitness than had

previously been encountered by the slave, and will quickly be lost otherwise.

The master is tasked with coordinating the searches performed by the slaves, and

also functions as a melting pot for the diversity of solutions found by them. However,

when population sizes are small, variation may easily be lost by chance (i.e., genetic

drift). In order to ensure the master population’s ability to maintain the full level of

variation generated by the slaves, I have implemented a technique that I refer to as

migrant shielding. This simply amounts to maintaining a single copy of the most recent

migrant from each slave within the master population, and shielding those individuals

from both mutation and selection. The shielded individuals are copied unchanged into

each successive generation, and are replaced when a new migrant arrives. The master

population thus consists of a number of individuals identical in behavior to those of the

serial algorithm, plus one shielded individual for each of the slave populations. In terms

of leaving offspring, the shielded individuals act identically to all others, doing so in

proportion to their fitness. Maintaining the shielded individuals in the population has

little cost from either a computational or search efficiency perspective. These individuals

need only have their score evaluated once, and if they are of low fitness they simply will

not reproduce. When the fitness of one or more shielded individuals is near the best in

the master population, they may have a large impact on future generations of solutions.

Most importantly, the shielded individuals provide a large amount of variation to be

operated upon by the recombination operator, the details of which will be discussed

shortly.

95

At the end of each generation, the master checks if messages have arrived from

any slaves. If so, the message is converted into an individual which replaces the

individual previously received from that slave. The lnL score of the newly received

individual is immediately evaluated, and represents the highest fitness attained by the

slave that sent it. The master compares this score (lnLs) to the score of the most fit

individual that has yet been encountered (lnLmax), and may choose to send a copy of the

globally best individual to that slave. Specifically, the master sends an individual if the

difference in score is greater than a specified replacement threshold, R:

(lnLmax – lnLs) > R

R effectively determines the global behavior of the multi-population search, and the

implications of specific values will be discussed below. After sending an individual, the

master immediately moves on to evaluate individuals received from other slaves or to

proceed with the next GA generation.

Beyond coordinating the efforts of the slaves, the primary goal of the master is to

generate new solutions by using the diversity of solutions provided by the slaves. This is

done by creating one new individual per generation through the application of a simple

recombination operator. One recombination partner is chosen randomly from all

individuals in the population, using the same selection function used to choose the

parents of offspring individuals. The second recombination partner is chosen from among

the shielded individuals only, using a selection function with very low selection intensity

(s = 0.01). Thus, the first recombination partner is likely to be among the best solutions

yet found, and ideally the second partner will contribute novel topological variation

found by one of the slaves. Once the recombination partners have been chosen, the

96

recombination operator finds a bipartition that is present in both recombination partners,

but ensures that the subtrees defined by the bipartition do not have identical branching

structures. If such a bipartition can be found, the subtree of the first individual is removed

and that of the second copied in its place. Finally, the full branch-length optimization

procedure described in chapter 2 is applied, centered on the node at the base of the

swapped subtree. Note that the recombination procedure results in only one recombinant

offspring individual because the subtree is only swapped in one direction.

P-GARLI’s mode of recombination is essentially the same as that applied in

MetaPIGA (Lemmon and Milinkovich, 2002), which the authors term RCM. This type of

recombination has been noted to greatly outperform the recombination operator

implemented in GAML (Lewis, 1998), which often resulted in very drastic topology

changes. In the P-GARLI implementation, the two recombination partners are

specifically chosen to represent one of the best known solutions and a potentially very

different solution whose selection is only weakly determined by its fitness. The rationale

behind this is that large topologies may contain novel, highly optimal portions even if

they are not very optimal on the whole.

Parallel strategies

There are a number of ways that multiple GA populations might be managed to

improve search performance on large datasets. As noted previously, the replacement

threshold R controls the global search strategy of the parallel algorithm. The potential

strategies may be envisioned as lying along a continuum representing the degree of

independence of the searches performed by the slave populations. At one extreme lies a

strategy of complete slave independence, and at the other a strategy of very tight

coordination of slaves. At the independence extreme, each slave performs its own search

from start to finish, never receiving input from the master. Such an approach would be

97

specified by a very large value of R. This approach ensures that the maximal amount of

variation is maintained in the master population, to be acted upon by recombination. At

the extreme of no independence, specified by a small value of R, the master population

very frequently sends the best known individual to the slaves. This amounts to the master

frequently redirecting the search effort across all populations to the most promising

region of the search space that has yet been found. Recombination is not expected to be

of significant benefit with this strategy because little variation is maintained. Between

these extremes, moderate values of R allow the master to give independence to those

slaves who are producing promising results, but to redirect those who are doing the most

poorly.

The worst case scenario for the independent P-GARLI search strategy would

result if no additional increases in fitness were achieved through recombination. In such a

case the search would be expected to perform no worse than if a number of serial runs

equal to the number of slave populations had been performed. The worst case scenario

for the highly coordinated search strategy is more worrisome. Because this parallel search

simply directs all search effort to a small region of the search space, it may be quite

possible for it to become entrapped in a local optimum. Thus, a coordinated parallel

search could potentially perform no better than a single serial search, despite its use of

more processing power.

On a conceptual level, the optimal value of R depends largely on the topography

of treespace for the dataset being analyzed. If local topological optima are not prevalent,

the GA search will be limited in its ability to increase the score by the rate at which

beneficial rearrangements are performed. Because rearrangements are chosen randomly,

some may not be attempted for some time due to chance. In such a case, a low value of R

will cause more concentrated application of rearrangements to the best solution, speeding

98

hill-climbing. On the other hand, if local optima are common, their avoidance is critical if

the search is to attain a highly optimal solution. A large value of R then allows the

searches to explore many areas of treespace, effectively hedging its bets.

P-GARLI also implements a mechanism that allows the value of R to decrease

over the course of a run. This approach, termed a hybrid search, is appealing in that it

allows for very dispersed exploration of the search space early in a run, and allocates

more of the search effort to the most promising solutions as the run progresses. Thus, it

exploits the best aspects of the independent and coordinated parallel search strategies.

The rate of decrease of R could be tied to a variety of measurable attributes of the search.

For the sake of simplicity, the current P-GARLI implementation causes it to be reduced

according to the same conditions as the branch-length optimization parameter, Pb.

Starting and minimum values of R are specified by the user. Each time the master

population reduces Pb, R is reduced as well. R is reduced from its starting to minimum

values in the same number of steps specified for the reduction of Pb.

99

Chapter 5: Performance of the Parallel GARLI algorithm

5.1 INTRODUCTION

In contrast to many parallel algorithms, the primary aim of P-GARLI is not to

reduce runtimes relative to the serial algorithm. Instead, the algorithm seeks to find more

optimal solutions by coordinating the searches of multiple GA populations to perform a

more thorough search of tree space. Ideally, the algorithm should function at least as well

as the sum of its parts. For the parallel algorithm to be a viable choice for analysis, the

solution obtained when utilizing a certain number populations in P-GARLI should on

average be at least as optimal as the best solution obtained in an equal number of runs of

the serial GARLI algorithm. If this is not the case, then the use of the parallel algorithm

presents no benefit over the use of serial GARLI. As was the case with experiments

performed using the serial algorithm in chapter 3, the primary means of gauging

algorithm performance will be to compare solution optimality and runtimes.

5.2 METHODS

Computational setup

All parallel analyses were performed on Lonestar, a Rocks version 4.0 Linux

cluster (www.rocksclusters.org) maintained by the Texas Advanced Computing Center

(www.tacc.utexas.edu). Lonestar comprises 512 dual processor compute nodes, with a

mixture of 3.06 GHz and 3.2 GHz Intel Xeon processors. To assure consistency of

results, only 3.06 GHz processors were used for experiments, and only one processor was

used per node (the other processor remained idle). Each node contains 2 GB of system

memory. Other incidental analyses (searches to obtain starting topologies and to optimize

final results) were performed on Phylocluster2, a small Rocks version 3.2 cluster with

100

five dual processor compute nodes. Apart from the fact that Phylocluster2 contains 2.8

GHz Xeon processors, the two clusters used are essentially identical. The source code of

P-GARLI was compiled with the Intel icc compiler, version 8.0. The compiler flags

specified were “–O2 –ip –fno-alias”, which proved to result in the fastest code execution.

Because Lonestar enforces a maximum runtime limit of 24 hours, parallel runs

taking longer that this had to be restarted where they left off. This was done simply by

starting each of the populations with the last tree that had been written to file by each.

Parameters such as the branch-length optimization parameter were also set to their last

values. The program unfortunately does not yet implement checkpointing, which would

make this process simple and automated.

Dataset

The P-GARLI search algorithm is most likely to be of benefit on very large

datasets, where the larger and more complicated search spaces may lead the single

population algorithm to become entrapped in local optima. For this reason, as well as

because of computational limitations, only a single large dataset was used in the

experiments presented here. This was the Gutell3845 dataset, the largest examined in

chapter 3.

Starting conditions

One of the potential strengths of allowing multiple partially independent

populations is the ability to maintain a large amount of topological variation during a run.

Variation may be ensured from the outset of a run by seeding each population with a

different starting topology. To obtain a topologically diverse collection of starting trees,

simple parsimony searches using NNI branch swapping were performed in PAUP*. One

hundred replicate searches were performed per dataset, each beginning from a tree

101

obtained by stepwise addition with random addition sequences. From the 100 resulting

trees, 16 were randomly chosen to be used as starting points for the parallel analyses. The

16 topologies were ordered randomly. Parallel runs were then performed with each

population starting from a successive starting tree. Thus, runs using four populations used

the first four trees, runs using eight trees used the first eight trees, and runs using sixteen

populations used all of the trees. This procedure accentuates one potential benefit of

using larger numbers of populations. To investigate whether this method of introducing

topological diversity is in fact beneficial, one set of experiments was also performed in

which all populations were seeded with the best of the 16 starting topologies.

Experiments performed in Chapter 3 demonstrated that fixing model parameters

at pre-estimated values during a GARLI search is an effective way of reducing runtimes

for analyses of large datasets. For this reason, all parallel runs were performed with all

populations fixed at the same set of model parameters. The parameter values used were

those estimated on the best of the starting topologies for each dataset used in the serial

experiments in Chapter 3. One other potential benefit of fixing model parameters in the

context of a parallel run is that it ensures that the topologies obtained by each remote

population may be more easily grafted together by the recombination operator.

Experimental design

As was the case with the serial experiments performed in Chapter 3, a nearly

limitless number of combinations of GA settings are possible in analyses using the P-

GARLI algorithm. Because of the additional computational resources required to perform

parallel analyses, the majority of the experiments investigated the effect of two main

variables: population coordination scheme and the number of populations. Because of the

large computational requirements, only two replicates were performed for each

combination of variables. The primary set of experiments amounts to 18 total runs (2

102

replicates x 3 communication schemes x 3 population numbers). In addition, six other

runs using a single starting topology for all populations in conjunction with the

independent coordination scheme were performed to determine the importance of starting

parallel runs with a diversity of topologies. These exploratory experiments will allow

future experiments to be designed to investigate the optimal settings for a P-GARLI

analysis in more detail. All general GA population settings were the same as those used

for the serial analyses in Chapter 3.

Population coordination scheme

Three schemes of slave population coordination were examined. The schemes are

determined by the setting of R (the replacement threshold), as described in chapter 4. The

schemes used were:

1. Full slave independence (R = infinity). In this scheme the master receives individuals

from the slaves, but never sends them. This coordination scheme was used both in

runs using different starting topologies for all populations and for runs using a single

starting topology.

2. Highly coordinated search (R = 5). In this scheme the master sends the best-known

individual to any slaves whose best score fall more than 5 lnL behind the globally

best score.

3. Hybrid search (initial R = 2000, minimum R = 5, geometric reduction from initial to

minimum value in 40 increments). In this scheme the master performs as in scheme 1,

until the rate at which new topologies are found slows, and then gradually transitions

into scheme 2.

103

Processor numbers

Determining how the number of processors (and GA populations) applied to a P-

GARLI run affects the results is of clear interest. There is likely to be a point of

diminishing returns, after which applying more processors no longer increases

performance. Because the current implementation only allows a single master population

that must communicate with all slaves, the algorithm is unlikely to scale well to very

large numbers of populations. To initially investigate the effect of processor number, runs

were performed using 4, 8 and 16 processors.

5.3 RESULTS AND DISCUSSION

Runtimes and the scores obtained after optimization of all final results in PAUP*

appear in table 5-1. Figure 5-1 graphically presents the optimized lnL scores of the

solutions found in all parallel analyses. Also appearing are the results of the most

comparable of the serial results (those performed using the TOPO+MOD condition) for

the Gutell3845 dataset presented in Chapter 3. One fact that is immediately apparent is

that although there is overlap in the distributions of scores obtained by the serial and

parallel analyses, the best parallel solutions are significantly better than the best obtained

by the serial algorithm.

Runs using diverse starting topologies

Comparing the solutions obtained across the three types of parallel population

coordination, none of the coordination schemes is obviously superior. The small number

of replicates makes it difficult to draw definite conclusions, but it tentatively appears that

the Hybrid scheme is the most successful, resulting in the highest scores and the least

variance between runs. If the Hybrid scheme is indeed the best performing, it would

104

suggest that there is benefit both in allowing independent searches early in a run and in

performing very intensive mutations of the best solution late in a run.

Coordination Scheme
Independent Coordinated Hybrid Independent-1 Start

Processors lnL time(min) lnL time(min) lnL time(min) lnL time(min)
4 -261064.3 2418 -261160.8 1856 -261018.6 3598 -260897.2 2014

-261181.0 1804 -261370.5 1440 -261052.0 1955 -260917.0 1837
8 -260977.8 1691 -261115.2 2287 -260916.3 1965 -260958.7 1211

-260868.1 1969 -260974.9 1627 -260926.0 1912 -260895.1 1972
16 -261094.7 1378 -260878.0 5159 -260937.2 1109 -260901.6 1685

-260898.8 2226 -260883.2 5601 -260819.3 5176 -260895.1 1439

Table 5-1. Optimized scores and runtimes of P-GARLI analyses of the Gutell3845
dataset.

Comparing results across processor numbers is somewhat more conclusive.

Within each communication scheme, all runs performed with eight processors

outperformed all runs performed with four processors. None of the four-processor runs

surpassed the best of the serial runs. The results for sixteen-processor runs are somewhat

mixed, with some runs performing more poorly than some of the eight-processor runs.

Nonetheless, five of the six sixteen-processor runs exceed the best score obtained in any

of the serial runs, suggesting that increasing to this number of processors may be helpful.

Because the scores obtained by the four-processor runs completely overlap with

those obtained by serial runs, it must be determined whether there is any benefit to

performing parallel runs with this number of processors. To determine whether the four-

processor parallel runs obtained scores better than would be expected from four serial

runs, a simulation was performed. In each replicate, four of the twenty-four scores

obtained in the serial runs were randomly chosen, and the best of the four was noted. Out

of 106 replicates, the average of these best scores was -261061.7 lnL. This value falls in

the middle of the scores obtained in the six four-processor parallel runs, making it unclear

105

whether parallel runs with this number of processors offer any benefit over performing

serial analyses. A similar simulation was performed for random selections of eight scores,

and resulted in an average score of -261019.3 lnL. All but one of the eight-processor runs

greatly exceeded this value, suggesting that utilizing a larger numbers of processors may

increase the usefulness of the parallel algorithm. Such a simulation is unnecessary for the

sixteen-processor runs, as all but one exceeded the best of the scores obtained in the serial

runs.

Figure 5-1. Optimized lnL scores of the solutions resulting from P-GARLI analyses of
the Gutell3845 dataset. The results of 24 serial analyses appear for
comparison.

106

Figure 5-2 presents the relationship between optimized lnL scores and runtimes

for the three communication schemes and the serial runs. The majority of the parallel

runs had runtimes that were similar to those of the serial runs. However, several runs

under the Coordinated and Hybrid schemes took much longer. Looking more closely at

the output of these runs makes it clear that the very long runtimes are largely an artifact

of the way that the automated termination condition is defined. When the value of R (the

threshold difference in lnL score necessary for the master to send a new individual to a

slave) is small, the number of GA generations that the master can perform in a given

amount of time is many fold lower than the number of generations that may be completed

Figure 5-2. Runtimes vs. lnL scores for parallel analyses of the Gutell3845 dataset. The
results of 24 serial analyses appear for comparison.

107

when R is large. Because the termination condition is defined in terms of the number of

generations without topological change, the slow progression of generations artificially

makes the termination condition more difficult to achieve.

There are two reasons for the slower progression of generations when R is small.

First, small values of R increase the amount of communication the master must perform

because it must send individuals to the slaves quite often. The second and more important

reason is that small values of R lead to an increased computational burden due to scoring

topologies. When R is large, few of the shielded individuals in the master population have

high enough scores to leave offspring except through recombination. However, when R is

small all individuals in the master population have very similar scores, and all are likely

to leave offspring. Because there is insufficient memory available to store likelihood

calculations for all individuals, a small value of R means that many individuals must be

rescored from scratch each generation.

Runs using a single starting topology

Runs performed using the independent coordination scheme and a single good

starting topology for all populations performed quite well. This set of runs shows much

less variance in scores than do the runs using any of the population coordination schemes

and different starting topologies for each population. More importantly, the scores

obtained in all six of these runs surpassed the best of the serial runs. The most striking

increase in performance is seen in the four-processor runs. It is not clear that the number

of processors used has any effect on final results when all runs are started from a good

starting topology.

108

5.4 CONCLUSIONS

The exploratory experiments presented here demonstrate that under some

conditions the P-GARLI algorithm is able to outperform the serial GARLI algorithm in

terms of the scores obtained. Over half of the parallel runs resulted in scores more

optimal than those obtained by the best of the serial runs performed on the Gutell3845

dataset. However, attempts to incorporate a topologically diverse set of starting points

seem to not have been as beneficial as had been expected. This does not necessarily mean

that variation between populations is unimportant during a parallel run. More detailed

examination of the results of runs performed with a single starting topology (not shown)

indicates that the independent populations diverge from one another immediately after a

run is started. Preliminary results suggest that this variation is indeed an important

resource that the master may use to attain more optimal scores through topological

recombination. The experiments presented here suggest that it may be best to start all

parallel populations from the best topology that can be obtained, and to leave the

generation of diversity to the stochastic nature of the GA.

Several potential changes and improvements to the parallel algorithm are

suggested by the results of the experiments performed here. The parallel termination

condition should be rethought so that it is more comparable between the different

communication schemes. One way of doing this would be to define the criterion it in

terms of a length of time without improvement, rather than in terms of numbers of

generations. Alternative communication schemes should also be investigated. In

particular, a scheme in which the value of R is not equal for all populations, but varies

across them. In such a scheme some populations with large values of R would allow

variation to be maintained, while others with low values of R could intensively search in

the vicinity of the current best solution.

109

References

Akaike, H. 1973. Information theory as an extension of the maximum likelihood
principle. pp. 267-281 in B. N. Petrov and F. Csaksi, editors. 2nd International
Symposium on Information Theory. Akademiai Kiado, Budapest, Hungary.

Allen, B., and M. Steel. 2001. Subtree transfer operations and their induced metrics on
evolutionary trees. Ann. Combinator. 5:1-13.

Brauer, M.J., M. T. Holder, L. A. Dries, D. J. Zwickl, P. O. Lewis, and D. M. Hillis.
2002. Genetic algorithms and parallel processing in maximum-likelihood phylogeny
inference. Mol. Biol. Evol. 19(10):1717-1726.

Brown, J., and P. Warren. 1998. Antibiotic discovery: is it in the genes? Drug Discovery
Today 3:564-566.

Buckley, T. R., C. Simon, and G. K. Chambers. 2001. Exploring among-site rate
variation models in a maximum likelihood framework using empirical data: effects of
model assumptions on estimates of topology, branch lengths, and bootstrap support. Syst.
Biol. 50:67-86.

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: a
practical information theoretic approach. 2nd ed. Springer, New York.

Bush, R. M., C. A. Bender, K. Subbarao, N. J. Cox, and W. M. Fitch. 1999. Predicting
the evolution of human influenza. Science 286(5446):1921–1925.

Cantu-Paz, E. 2001. Efficient and Accurate Parallel Genetic Algorithms. Kluwer
Academic Publishers, Norwell, Massachusetts.

Chase, M. W., D.E. Soltis, R.G. Olmstead, D. Morgan, D.H. Les, B.D. Mishler, M.R.
Duvall, R.A. Price, H.G. Hills, Y.L. Qiu, K.A. Kron, J.H. Rettig, E. Conti, J.D. Palmer,
J.R. Manhart, K.J. Sytsma, H.J. Michaels, W.J. Kress, K.G. Karol, W.D. Clark, M.
Hedren, B.S. Gaut, R.K. Jansen, K.J. Kim, C.F. Wimpee, J.F. Smith, G.R. Furnier, S.H.
Strauss, Q.Y. Xiang, G.M. Plunkett, P.S. Soltis, S.M. Swensen, S.E. Williams, P.A.
Gadek, C.J. Quinn, L.E. Eguiarte, E. Golenberg, G.H. Learn, Jr., S.W. Graham, S.C.H.
Barrett, S. Dayanandan, and V.A. Albert. 1993. Phylogenetics of seed plants: An analysis
of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical
Garden, 80:528–580.

Congdon, C. B. 2001. Gaphyl: A genetic algorithms approach to cladistics. pp. 67-78 in
Principles of Data Mining and Knowledge Discovery, ed. L. DeRaedt and A. Siebes.
Lecture Notes in Computer Science, No. 2168. Spinger-Verlag, Berlin.

110

Faith, D. P. 1992. Genetic diversity and taxonomic priorities for conservation. Biol.
Conserv. 68:69–74.

Felsenstein, J. 1978. Cases in which parsimony and compatibility will be positively
misleading. Syst. Zool. 27: 401-410.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood
approach. J. Mol. Evol. 17:368-376.

Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Oxford University Press,
Oxford.

Fleissner, R., D. Metzler, and A. von Haeseler. 2005. Simultaneous statistical multiple
alignment and phylogeny reconstruction. Syst. Biol. 54:548–561.

Foster, J.A. 2001. Evolutionary computation. Nat. Rev. Genet. 2:428-436.

Fukami-Kobayashi, K., and Y. Tateno. 1991. Robustness of maximum likelihood tree
estimation against different patterns of base substitutions. J. Mol. Evol. 32(1):79-91.

Gascuel, O. 1997. BIONJ: an improved version of the NJ algorithm based on a simple
model of sequence data. Mol. Biol. Evol. 14(7):685-695.

Goldman N, J.P. Anderson, and A.G. Rodrigo. 2000. Likelihood-based tests of topologies
in phylogenetics. Syst. Biol. 49(4):652-70.

Goldman, N. 1993. Simple diagnostic statistical tests of models for DNA substitution. J.
Mol. Evol. 37(6):650-661.

Gu, X., Y. X. Fu and W. H. Li. 1995. Maximum likelihood estimation of the
heterogeneity of substitution rate among nucleotide sites. Mol. Biol. Evol. 12(4):546-557.

Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate
large phylogenies by maximum likelihood. Syst. Biol. 52(5):696-704.

Hasegawa M, H. Kishino and T. Yano. 1985. Dating of the human-ape splitting by a
molecular clock of mitochondrial DNA. J. Mol. Evol. 22(2):160-174.

Higgins, D., Thompson J., Gibson T. Thompson J.D., Higgins D.G., and Gibson T.J.
1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res. 22:4673-4680.

Hillis, D. M. 1996. Inferring complex phylogenies. Nature 383:130–131.

111

Hillis, D. M., and T. P. Wilcox. 2005. Phylogeny of the New World true frogs (Rana).
Mol. Phylogenet. Evol. 34(2):299-314.

Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor.

Huelsenbeck, J. P. 1995. Performance of phylogenetic methods in simulation. Syst. Biol.
44:17–48, 1995.

Huelsenbeck, J. P., and D. M. Hillis. 1993. Success of phylogenetic methods in the four
taxon case. Syst. Biol. 42:247–264.

Huelsenbeck, J. P., and F. Ronquist. 2001. MRBAYES: Bayesian inference of
phylogenetic trees. Bioinformatics 17(8):754–755.

Hull, D. 1988. Science as a Process: An Evolutionary Account of the Social and
Conceptual Development of Science, University of Chicago Press, Chicago.

Lanave, C., Preparata G., Saccone C., and Serio G. 1984. A new method for calculating
evolutionary substitution rates. J. Mol. Evol. 20(1):86-93.

Lemmon, A. R. and M. C. Milinkovitch. 2002. The metapopulation genetic algorithm:
An efficient solution for the problem of large phylogeny estimation. Proc. Natl. Acad.
Sci. USA. 99(16):10516-10521.

Lewis, P.O. 1998. A genetic algorithm for maximum-likelihood phylogeny inference
using nucleotide sequence data. Mol. Biol. Evol. 15(3)277-283.

Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T.
Lai, S. Steppi, G. Jobb, W. Förster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S.
Grumann, S. Hermann, R. Jost, A. König, T. Liss, R. Lüssmann, M. May, B. Nonhoff, B.
Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A.
Bode, and K.H. Schleifer. 2004. ARB: A Software Environment for Sequence Data.
Nucl. Acids Res., 32(4):1363–1371.

Lundy M. and A. Mees. 1986. Convergence of an annealing algorithm. Math. Program.
34:111-124.

Lunter, G., I. Miklos, A. Drummond, J. Jensen, and J. Hein. 2005. Bayesian coestimation
of phylogeny and sequence alignment. BMC Bioinformatics 6:83.

Maddison, D. R. 1991. The discovery and importance of multiple islands of most-
parsimonious trees. Syst. Zoo. 40:315-328.

112

Matsuda, H. 1996. Protein phylogenetic inference using maximum likelihood with a
genetic algorithm. pp 512-523 in L. Hunter and T. E. Klein, editors, Pacific Symposium
on Biocomputing ’96. World Scientific, London.

Mau, B., M. A. Newton, and B. Larget. 1999. Bayesian phylogenetic inference via
Markov chain Monte Carlo methods. Biometrics 55(1):1-12.

Mitchell, M. 1996. An Introduction to Genetic Algorithms: Complex Adaptive Systems.
MIT Press, Cambridge, Mass.

Moilanen, A. 1999. Searching for most parsimonious trees with simulated evolutionary
optimization. Cladistics 15:39-50.

Moret, B. M. E., L. Nakhleh, T. Warnow, C.R. Linder, A. Tholse, A. Padolina, J. Sun,
and R. Timme. 2004. Phylogenetic networks: modeling, reconstructibility, and accuracy.
IEEE/ACM Transactions on Computational Biology and Biocomputing, 1.

Nowostawski, M., and R. Poli. 1999. Parallel genetic algorithm taxonomy. In
Proceedings of the third international conference on knowledge-based intelligent
information engineering systems (KES'99), pp 88-92.

Olsen, G. J., H. Matsuda, R. Hagstrom, and R. Overbeek. 1994. fastDNAml: A tool for
construction of phylogenetic trees of DNA sequences using maximum likelihood.
Comput. Appl. Biosci. 10: 41-48.

Ou, C. Y., C.A. Ciesielski, G. Myers, C.I. Bandea, C.C. Luo, B.T. Korber, J.I. Mullins,
G. Schochetman, R.L. Berkelman, and A.N. Economou. 1992. Molecular epidemiology
of HIV transmission in a dental practice. Science 256(5060):1165–1171.

Poe, S. 1998. The effect of taxonomic sampling on accuracy of phylogenetic estimation:
A test case of a known phylogeny. Mol. Biol. Evol. 15:1086–1090.

Posada D., and K. A. Crandall. 2001. Selecting the best-fit model of nucleotide
substitution. Syst. Biol. 50(4):580-601.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1992. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1992. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge.

Rambaut, A., and N. C. Grassly. 1997. Seq-Gen: an application for the Monte Carlo
simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci.
13:235-238.

113

Rannala, B., and Z. H. Yang. 1996. Probability distribution of molecular evolutionary
trees: A new method for phylogenetic inference. J. Mol. Evol. 43:304–311.

Redelings, B. D., and M. A. Suchard. 2005. Joint Bayesian estimation of alignment and
phylogeny. Syst. Biol. 54(3):401-418.

Robinson, D. F., and L. R. Foulds. 1981. Comparison of phylogenetic trees. Math. Biosci.
53:131-147.

Rogers, J. S. 2001. Maximum likelihood estimation of phylogenetic trees is consistent
when substitution rates vary according to the invariable sites plus gamma distribution.
Syst. Biol. 50 (5): 713-722.

Rokas A., and S. B. Carroll. 2005. More genes or more taxa? The relative contribution of
gene number and taxon number to phylogenetic accuracy. Mol. Biol. Evol. 22(5):1337-
1344.

Rosenberg, M. S., and S. Kumar. 2001. Incomplete taxon sampling is not a problem for
phylogenetic inference. P. Natl. Acad. Sci. USA. 98(19):10751-10756.

Rosenberg, M. S., and S. Kumar. 2003. Taxon sampling, bioinformatics, and
phylogenomics. Syst. Biol. 52(1):119-124.

Salter L. and D. Pearl. 2001. A stochastic search strategy for estimation of maximum
likelihood phylogenetic trees. Syst. Biol. 50:7-17.

Shimodaira, H. and M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with
applications to phylogenetic inference. Mol. Biol. Evol. 16:1114-1116.

Soltis P. S., D. E. Soltis, and M. W. Chase. 1999. Angiosperm phylogeny inferred from
multiple genes as a tool for comparative biology. Nature 402(6760):358-359.

Stamatakis, A. 2005. An Efficient Program for phylogenetic Inference Using Simulated
Annealing. In Proceedings of 19th IEEE/ACM International Parallel and Distributed
Processing Symposium (IPDPS2005), High Performance Computational Biology
Workshop, Proceedings on CD, Denver, Colorado.

Stamatakis, A., T. Ludwig, and H. Meier. 2005. RAxML-III: a fast program for
maximum likelihood-based inference of large phylogenetic trees. Bioinformatics
21(4):456-463.

Sullivan J, Z. Abdo, P. Joyce and D. L. Swofford. 2005. Evaluating the performance of a
successive-approximations approach to parameter optimization in maximum-likelihood
phylogeny estimation. Mol. Biol. Evol. 22(6):1386-1392.

114

Sullivan, J., and Swofford, DL. 1997. Are guinea pigs rodents? The importance of
adequate models in molecular pylogenetics. J. Mamm. Evol. 4:77-86.

Sullivan, J., K. E. Holsinger, and C. Simon.1995. Among-site rate variation and
phylogenetic analysis of 12S rRNA in sigmodontine rodents. Mol. Biol. Evol. 12(6):988-
1001.

Swofford, D. L., G. J. Olsen, P. J. Waddel, and D. M. Hillis . 1996. Phylogenetic
inference. Pages 407–514 in Molecular systematics, 2nd. ed. (D. M. Hillis, B. K. Mable,
and C. Moritz, eds.). Sinauer, Sunderland, Massachusetts.

Swofford, D.L. 2002 PAUP*. Phylogenetic Analysis Using Parsimony (* and Other
Methods). Ver. 4.b10. Sunderland, Massachusetts: Sinauer Associates.

Vinh, L. S., and A. von Haeseler. 2004. IQPNNI: Moving fast through tree space and
stopping in time. Mol. Biol. Evol. 21(8):1565-1571

Woese C.R., Magrum L.J., Gupta R., Siegel R.B., Stahl D.A., Kop J., Crawford N.,
Brosius J., Gutell R., Hogan J.J., and Noller H.F. 1980. Secondary structure model for
bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic
Acids Res. 8:2275-2293.

Yang, Z. 1993. Maximum-likelihood estimation of phylogeny from DNA sequences
when substitution rates differ over sites. Mol. Biol. Evol. 10(6):1396-1401.

Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with
variable rates over sites: approximate methods. J. Mol. Evol. 39(3):306-314

Zwickl, D. J., and D. M. Hillis. 2002. Increased taxon sampling greatly reduces
phylogenetic error. Syst Biol. 51(4):588-98.

115

Vita

Derrick J. Zwickl was born in Chicago, Illinois on 8 June 1974, to Keith and

Helga Zwickl. After completing his work at University High School, Tucson, Arizona, in

1992, he was awarded a scholarship for undergraduate studies at the University of

Arizona. Derrick received his Bachelor of Science in Ecology and Evolutionary Biology

in 1995. After working for several years in the computer software field, Derrick entered

the Graduate School at the University of Texas in the Section of Integrative Biology in

1999.

Permanent Address: 4205 N. Camino del Celador, Tucson, AZ 85718.

This dissertation was typed by the author.

